File:NLC416-14jh006241-69125 初中標準算學代數.pdf

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Go to page
next page →
next page →
next page →

Original file (833 × 1,370 pixels, file size: 4.91 MB, MIME type: application/pdf, 291 pages)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
初中標準算學代數   (Wikidata search (Cirrus search) Wikidata query (SPARQL)  Create new Wikidata item based on this file)
Author
孫宗堃 胡爾康編輯
image of artwork listed in title parameter on this page
Title
初中標準算學代數
Publisher
中學生書局[發行者]
Description

目錄
第一章 文字數
1 代數學的目的
2 文字數
3 符號的使用
4 因數,公因數
5 係數
6 指數,冪及根(習題一)
7 代數式
8 代數式的值(習題二)
9 項
10 項的種類(習題三)
11 變語言為代數式(習題四,習題五)
12 加法定律
13 文字數加法
14 減法定律
15 文字數減法(習題六)
16 乘法定律
17 文字數乘法(習題七)
18 除法定律
19 文字數除法(習題八)
20 括弧計算(習題九,習題十)
21 式的計算
22 函數
23 求函數的值(習題十一)
第二章 簡易方程式
24 等式
25 恆等式
26 方程式
27 已知數及未知數
28 等量公理
29 移項定理
30 移係數定理
31 解方程式的步驟(習題十二)
32 算術解題和代數解題的比較
33 代數解題方法
34 方程式的根
35 根的覆驗(習題十三)
第三章 正負數
36 負數的需要
37 正負數
38 相對數,絕對數
39 正負數的實例(習題十四)
40 正負數加法(習題十五)
41 正負數減法(習題十六)
42 正負數乘法(習題十七)
43 正負數除法(習題十八)
第四章 整式四則
44 代數式的運算
45 整式
46 獨項式
47 多項式
48 獨項式的次數
49 多項式的次數
50 同次式(習題十九)
51 整式的整理
52 獨項式加法(習題二十)
53 多項式加法(習題二十一)
54 加法驗算
55 獨項式減法(習題二十二)
56 多項式減法(習題二十三)
57 減法驗算
58 獨項式乘獨項式(習題二十四)
59 獨項式乘多項式(習題二十五)
60 多項式乘多項式(習題二十六)
61 分離係數乘法(習題二十七)
62 乘法驗算
63 獨項式除獨項式(習題二十八)
64 獨項式除多項式(習題二十九)
65 多項式除多項式(習題三十)
66 分離係數除法(綜合除法)(習題三十一)
67 除法驗算
第五章 一元一次方程式
68 一元一次方程式的解法(習題三十二)
69 一元一次方程式應用問題
70 運動問題(習題三十三)
71 槓桿問題(習題三十四)
72 時鐘問題(習題三十五)
73 工程問題(習題三十六)
74 混合問題(習題三十七)
75 其他問題(習題三十八)
第六章 特別積與商
76 特別積的公式及其應用
(1) (a+b)2
(2) (a-b)2
(3) (a+b)(a-b)
(4) (x±a)(x±b)
(5) (a+b)2
(6) (a-b)3(習題三十九)
77 特別商的公式及其應用
(7) 〓
(8) 〓
(9) 〓
(10) 〓
(11) 〓
(12) 〓(習題四十)
第七章 因數分解法
78 因數分解的意義
79 合有因數分解法(習題四十一)
80 分類因數分解法(習題四十二)
81 獨項式的平方根
82 完全平方三項式因數分解法(習題四十三)
83 兩數平方較的因數分解法(習題四十四)
84 兩數立方和及較的因數分解法(習題四十五)
85 二次三項式分解因數法(1)(習題四十六)
86 二次三項式分解因數法(2)(習題四十七)
87 雜例(習題四十八)
第八章 最高公約式和最低公倍式
88 公約式
89 最高公約式
90 獨項式最高公約式的求法(習題四十九)
91 多項式最高公約式的求法(1)(習題五十)
92 多項式最高公約式的求法(2)
93 續上節(習題五十一)
94 公倍式
95 最低公倍式
96 獨項式最低公倍式的求法(習題五十二)
97 多項式最低公倍式的求法(習題五十三)
第九章 分式四則
98 分式
99 分式基本定律
100 約分(習題五十四)
101 通分(習題五十五)
102 分式加減法(習題五十六)
103 分式乘法(習題五十七)
104 倒數
105 分式除法(習題五十八)
106 繁分式之化法(習題五十九)
第十章 分式方程式
107 分式方程式之解法(習題六十)
108 分式方程式應用問題(習題六十一)
109 文字方程式(習題六十二)
第十一章 比及比例
110 比
111 比的兩項
112 比的定律
113 舉例(習題六十三)
114 比例
115 第四比例項
116 第三比例項
117 比例中項
118 比例定律(習題六十四)
第十二章 變數法,函數及其變跡
119 正變
120 反變
121 合變
122 變數問題(習題六十五)
123 點之坐標
124 正變函數之變跡
125 一次函數之變跡(習題六十六)
126 統計圖表(習題六十七)

Language Chinese
Publication date 民國二十四年[1935]
Source
institution QS:P195,Q732353
(民國時期文獻 民國圖書)
館藏信息
InfoField
MG/G634.62/82
主題
InfoField
代數
中圖分類
InfoField
G634.62
載體形態
InfoField
269頁

Licensing

[edit]
This image is in the public domain because it is a mere mechanical scan or photocopy of a public domain original, or – from the available evidence – is so similar to such a scan or photocopy that no copyright protection can be expected to arise. The original itself is in the public domain for the following reason:
Public domain
This image is now in the public domain in China because its term of copyright has expired.

According to copyright laws of the People's Republic of China (with legal jurisdiction in the mainland only, excluding Hong Kong and Macao), amended November 11, 2020, Works of legal persons or organizations without legal personality, or service works, or audiovisual works, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation. For photography works of natural persons whose copyright protection period expires before June 1, 2021 belong to the public domain. All other works of natural persons enter the public domain 50 years after the death of the creator.
According to copyright laws of Republic of China (currently with jurisdiction in Taiwan, Penghu, Kinmen, Matsu, etc.), all photographs and cinematographic works, and all works whose copyright holder is a juristic person, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation, and all other applicable works enter the public domain 50 years after the death of the creator.

Important note: Works of foreign (non-U.S.) origin must be out of copyright or freely licensed in both their home country and the United States in order to be accepted on Commons. Works of Chinese origin that have entered the public domain in the U.S. due to certain circumstances (such as publication in noncompliance with U.S. copyright formalities) may have had their U.S. copyright restored under the Uruguay Round Agreements Act (URAA) if the work was under copyright in its country of origin on the date that the URAA took effect in that country. (For the People's Republic of China, the URAA took effect on January 1, 1996. For the Republic of China (ROC), the URAA took effect on January 1, 2002.[1])
To uploader: Please provide where the image was first published and who created it or held its copyright.

You must also include a United States public domain tag to indicate why this work is in the public domain in the United States.

čeština  Deutsch  English  português  română  slovenščina  Tagalog  Tiếng Việt  македонски  русский  മലയാളം  ไทย  한국어  日本語  简体中文‎  繁體中文  +/−



This tag is designed for use where there may be a need to assert that any enhancements (eg brightness, contrast, colour-matching, sharpening) are in themselves insufficiently creative to generate a new copyright. It can be used where it is unknown whether any enhancements have been made, as well as when the enhancements are clear but insufficient. For known raw unenhanced scans you can use an appropriate {{PD-old}} tag instead. For usage, see Commons:When to use the PD-scan tag.


Note: This tag applies to scans and photocopies only. For photographs of public domain originals taken from afar, {{PD-Art}} may be applicable. See Commons:When to use the PD-Art tag.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:10, 11 June 2023Thumbnail for version as of 20:10, 11 June 2023833 × 1,370, 291 pages (4.91 MB)PencakeBot (talk | contribs)Upload 初中標準算學代數 (1/1) by 孫宗堃,胡爾康編輯 (batch task; nlc:data_416,14jh006241,69125; 民國圖書.8; 初中標準算學代數)

Metadata