File:NLC416-08jh013662-32469 布利氏新式算學教科書 第1卷.pdf

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Go to page
next page →
next page →
next page →

Original file (735 × 1,118 pixels, file size: 7.51 MB, MIME type: application/pdf, 403 pages)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
布利氏新式算學教科書   (Wikidata search (Cirrus search) Wikidata query (SPARQL)  Create new Wikidata item based on this file)
Author
[〔美〕E.R.Breslich著]
image of artwork listed in title parameter on this page
Title
布利氏新式算學教科書
Volume 第1卷
Publisher
商務印書館[發行者]
Description

目錄
第一章 函數 含一元之方程
函數 變數 常數
一次函數
正變
二次函數
二次以上之方程之圖線解法
綜合除法 餘數定理
用劈因數法解二次以上之方程
函數〓
第二章 三角函數
一般之角
用圖線求三角函數之值
由0°至360°間諸角函數之變化
三角函數之圖線
負角之三角函數
以α角之函數表示(〓 α)諸角之函數
以α角之函數表示(n•〓 α)諸角之函數
第三章 一次方程
含一個未知量之一次方程
歸於一個未知量之一次方程之問題
含兩個未知量之一次方程
用行列式解一次方程系
含三個或多於三個未知量之一次方程
用行列式解方程法
第四章 含一元之二次方程
二次方程之解法
多項式之平方根
分數方程
歸於二次方程之問題
歸於二次形狀之方程
三角方程
二次方程之根之性質
二次方程之根與係數之關係
劈因數法
第五章 劈因數法 分數
兩平方之較
相似冪之和或較
三項式
多項式
劈因數雜題
分數之雜題
複分數之雜題
第六章 指數,根數,無理方程
正整指數之基礎定則
零指數 分數指數 負數指數
各大學入學試驗算題匯集
根數
根數化法
根數之加減法
根數之乘法
根數之除法
有理化分母法
根數式之平方根
無理方程
三角方程
第七章 對數 計算尺
省略計算
對數
常用對數
對數表
對數之性質
指數方程
計算尺
第八章 三角形之解法 對數
對數函數表之用
直角三角形用對數之解法
斜三角形邊與角之關係
斜三角形之解法
斜三角形之面積
印度之三角學
阿拉伯之三角學
歐洲中古之三角學
第九章 幾角諸函數間之關係
和差定理
倍角之函數
半角之函數
三角方程
第十章 二項定理 級數
二項定理
算術級數
幾何級數
無限幾何級數
第十一章 含兩元之方程系
含兩個未知量之二次方程之圖線
聯立二次方程之解法
高於二次之方程之解法
無理方程與分數方程之解法
第十二章 表面之面積
多面體 曲面柱 曲面錐
平面所造之截面
面積
旋轉表面
球之面積
第十三章 體積
矩形面體之體積
體積之比較
角柱之體積
圓柱之體積
角錐之體積
平截角錐之體積
圓錐之體積
平截圓錐之體積
球之體積
分球體之體積
第十四章 多面角,四面體,球面多邊形
多面角
四面體
球面角
極球面三角形
對稱與全等
球面三角形之面積
第十五章 前兩編幾何學定理及假說提要
基本假說

三角形及多邊形之角
垂線
平行線
相合三角形
四邊形
相似形
三角形各邊之關係
等比例線段

用弧量角法
正多邊形及圓
不等式
軌跡 會合線
會合線
面積
面積之等比例
空間中之線與平面
作圖題
附錄
目錄另詳
中西名詞索引
名人像傳目錄
來本之(gottfried wilhelm leibnitz)
羅華德爾(guillaume françois antoine l'hôpital)
孟傑(gaspard monge)
訥白爾(john napier)
卡但(girolamo cardano)(英名 cardan)
賈法利利(bonaventura cavalieri)

Language Chinese
Publication date 民國15[1926]
Source
institution QS:P195,Q732353
(民國時期文獻 民國圖書)
主題
InfoField
初等數學
中圖分類
InfoField
O12
載體形態
InfoField
382,118,9頁

Licensing

[edit]
This image is in the public domain because it is a mere mechanical scan or photocopy of a public domain original, or – from the available evidence – is so similar to such a scan or photocopy that no copyright protection can be expected to arise. The original itself is in the public domain for the following reason:
Public domain
This image is now in the public domain in China because its term of copyright has expired.

According to copyright laws of the People's Republic of China (with legal jurisdiction in the mainland only, excluding Hong Kong and Macao), amended November 11, 2020, Works of legal persons or organizations without legal personality, or service works, or audiovisual works, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation. For photography works of natural persons whose copyright protection period expires before June 1, 2021 belong to the public domain. All other works of natural persons enter the public domain 50 years after the death of the creator.
According to copyright laws of Republic of China (currently with jurisdiction in Taiwan, Penghu, Kinmen, Matsu, etc.), all photographs and cinematographic works, and all works whose copyright holder is a juristic person, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation, and all other applicable works enter the public domain 50 years after the death of the creator.

Important note: Works of foreign (non-U.S.) origin must be out of copyright or freely licensed in both their home country and the United States in order to be accepted on Commons. Works of Chinese origin that have entered the public domain in the U.S. due to certain circumstances (such as publication in noncompliance with U.S. copyright formalities) may have had their U.S. copyright restored under the Uruguay Round Agreements Act (URAA) if the work was under copyright in its country of origin on the date that the URAA took effect in that country. (For the People's Republic of China, the URAA took effect on January 1, 1996. For the Republic of China (ROC), the URAA took effect on January 1, 2002.[1])
To uploader: Please provide where the image was first published and who created it or held its copyright.

You must also include a United States public domain tag to indicate why this work is in the public domain in the United States.

čeština  Deutsch  English  português  română  slovenščina  Tagalog  Tiếng Việt  македонски  русский  മലയാളം  ไทย  한국어  日本語  简体中文‎  繁體中文  +/−



This tag is designed for use where there may be a need to assert that any enhancements (eg brightness, contrast, colour-matching, sharpening) are in themselves insufficiently creative to generate a new copyright. It can be used where it is unknown whether any enhancements have been made, as well as when the enhancements are clear but insufficient. For known raw unenhanced scans you can use an appropriate {{PD-old}} tag instead. For usage, see Commons:When to use the PD-scan tag.


Note: This tag applies to scans and photocopies only. For photographs of public domain originals taken from afar, {{PD-Art}} may be applicable. See Commons:When to use the PD-Art tag.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:16, 22 April 2023Thumbnail for version as of 14:16, 22 April 2023735 × 1,118, 403 pages (7.51 MB)PencakeBot (talk | contribs)Upload 布利氏新式算學教科書 第1卷 (1/2) by [(美)E.R.Breslich著] (batch task; nlc:data_416,08jh013662,32469; 民國圖書-PD2022.2; 布利氏新式算學教科書)

Metadata