File:NLC416-01jh006229-79053 統計研究法.pdf

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Go to page
next page →
next page →
next page →

Original file (595 × 835 pixels, file size: 4.1 MB, MIME type: application/pdf, 277 pages)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
統計研究法   (Wikidata search (Cirrus search) Wikidata query (SPARQL)  Create new Wikidata item based on this file)
Author
〔德〕裘倍爾(E. Czuber)著
image of artwork listed in title parameter on this page
Title
統計研究法
Publisher
世界書局
Description

分定標論、變標論兩編。含標準之符號及配合、標準之性、集團中之分布、相關係數之應用等11章

目錄
第一編 定標論
第一章 標準之符號及配合
1 互變
2 相異各類及其範圍
3 以正類表示反類法
4 頻數計算法
5 生育值生死者標準之分類
6 各類範圍應滿足之條件
第二章 標準之性
7 標準之互倚及獨立
8 正倚及負倚
42625 例:(1)生死嬰孩之性別(2)嬰孩依父母婚否之分類(3)聾啞及白痴(4)父子之瞳色
13 二標之絕對倚度
14 倚係數
15 例:(1)夫婦之瞳色(2)死亡嬰孩之性別及其父母之婚否(3)植物高度與母種純離之關係(4)夫妻之體格(5)童年殘廢
第三章 間接互倚
16 直接互倚及間接互倚之區別
17 直接互倚之算術性質
18 例:(1)學童之殘廢(2)相鄰三代之瞳色(3)聾啞盲暈及白痴
第四章 復分類
19 復分類及雙檢表
20 互倚之研究均性
21 概倚係數
22 例:(1)男子之發色瞳色(2)兄弟體格及姐妹性情
第一編 變標論
第一章 集圖中之分布
23 連續集圖及間續集圖
24 分類及制表
25 例:(1)九齡松之高度(2)新育嬰孩之體重(3)umbrien後備兵之頭蓋指數
26 不等幅之分類,收入之分布,白喉死亡之分布
27 表分布之幾何圖,屢數多邊形及梯級圖
28 和表及和多邊形
29 屢數曲線
30 模範屢數曲線
31 不稱分布及其屢數曲線
32 單方分布
33 畸形分布
第二章 中值
34 中值及散步量之意義
35 中值需滿足之條件
36 算術中值
37 算術中值之二種求法
38 決定算術中值所用之求和法
39 例:(1)幼松之平均高(2)成年男子之平均重(3)鯉魚尾刺之平均數(4)木蘭葵中種子之平均數
40 算術中值之特性
41 心值例
42 心值之性質及其與算術中值之關係
43 密值及其意義
44 決定密值之近似法例
45 當最密二類之屢數相等時決定密值之近似法例
46 m,c及d大小之關係
47 幾何中值
48 用對數法研究集圖
49 調和中值
第三章 散布量
50 散布量之意義
51 均方差
52 業巳分類之集圖其均方差之算法
53 應用求和法決定均方差
54 例:(1)農家夏季之工資(2)美國新兵之體高(3)1775-1847年wien元旦之氣壓
55 sheppard氏公式
56 均淨差
57 四分值及十分值
58 撒布量之比較及其比值
59 變率及其應用
60 不稱分布之傾度
61 集圖之全盤計算(1)劍橋每日之氣壓(2)24-25歲男子所娶新婦之年齡
第四章 兩標相關性理論
62 相關之意義 相關表之外形
63 相關表之填法
64 例:(1)今取草花梗與花瓣之數目,花瓣數目與其中最長者之長(2)父子之繁殖力(3)今取草主荲厚與最長花瓣之長,今取草最長花瓣之長與其寬(4)常春藤葉之寬與其長
65 表雙標分布之幾何圖形
66 相關表之算術中值與均方差,及其對於兩性番值表之應用
67 雙標互關之理論
68 再論雙標互關,消長方程,消長直線
第五章 兩標相關性應用
69 相關度之估計
70 積和∑(xy)之求法
71 直線性相關.例(1)今取草主荲厚與最長花瓣之長(2)今取草最長花瓣之長與其寬(3)父子之繁殖力(4)母女之繁殖力(5)常春藤葉之寬與其長
72 非直線相關.例(1)新育男孩及胎盤之重量(2)生育數量及男孩千分率
73 相關比率
74 72節例(2)之相關比率
第六章 相關係數之應用
75 變數代數和之均方差
76 算術中值之均方差
77 二統計結果之差異及其效力之判定
78 觀察值任意函數之算術中值及均方差二觀察值之積及商例
79 實際算術中值及通常算術中值
第七章 多標相關性
80 多標相關性之意義
81 消長方程之理論
82 消長係數之符號
83 標準方程式及其由來
84 相關係數及均方差之推廣
85 標準方程之間接解法
86 計算相關係數消長係數及均方差之循環公式
87 計算手積公式(三變數)
88 相關論之應用範圍及應用時應注意各點
89 例一.料草收貨所受雨量及溫度之影響
90 例二.貧民增率及其環境之關係(四變數)

Language Chinese
Publication date 民國22[1933]
Source
institution QS:P195,Q732353
(民國時期文獻 民國圖書)
館藏信息
InfoField
C81/QEB
主題
InfoField
統計資料
中圖分類
InfoField
C812
載體形態
InfoField
254,4頁

Licensing

[edit]
This image is in the public domain because it is a mere mechanical scan or photocopy of a public domain original, or – from the available evidence – is so similar to such a scan or photocopy that no copyright protection can be expected to arise. The original itself is in the public domain for the following reason:
Public domain
This image is now in the public domain in China because its term of copyright has expired.

According to copyright laws of the People's Republic of China (with legal jurisdiction in the mainland only, excluding Hong Kong and Macao), amended November 11, 2020, Works of legal persons or organizations without legal personality, or service works, or audiovisual works, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation. For photography works of natural persons whose copyright protection period expires before June 1, 2021 belong to the public domain. All other works of natural persons enter the public domain 50 years after the death of the creator.
According to copyright laws of Republic of China (currently with jurisdiction in Taiwan, Penghu, Kinmen, Matsu, etc.), all photographs and cinematographic works, and all works whose copyright holder is a juristic person, enter the public domain 50 years after they were first published, or if unpublished 50 years from creation, and all other applicable works enter the public domain 50 years after the death of the creator.

Important note: Works of foreign (non-U.S.) origin must be out of copyright or freely licensed in both their home country and the United States in order to be accepted on Commons. Works of Chinese origin that have entered the public domain in the U.S. due to certain circumstances (such as publication in noncompliance with U.S. copyright formalities) may have had their U.S. copyright restored under the Uruguay Round Agreements Act (URAA) if the work was under copyright in its country of origin on the date that the URAA took effect in that country. (For the People's Republic of China, the URAA took effect on January 1, 1996. For the Republic of China (ROC), the URAA took effect on January 1, 2002.[1])
To uploader: Please provide where the image was first published and who created it or held its copyright.

You must also include a United States public domain tag to indicate why this work is in the public domain in the United States.

čeština  Deutsch  English  português  română  slovenščina  Tagalog  Tiếng Việt  македонски  русский  മലയാളം  ไทย  한국어  日本語  简体中文‎  繁體中文  +/−



This tag is designed for use where there may be a need to assert that any enhancements (eg brightness, contrast, colour-matching, sharpening) are in themselves insufficiently creative to generate a new copyright. It can be used where it is unknown whether any enhancements have been made, as well as when the enhancements are clear but insufficient. For known raw unenhanced scans you can use an appropriate {{PD-old}} tag instead. For usage, see Commons:When to use the PD-scan tag.


Note: This tag applies to scans and photocopies only. For photographs of public domain originals taken from afar, {{PD-Art}} may be applicable. See Commons:When to use the PD-Art tag.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:06, 11 June 2023Thumbnail for version as of 00:06, 11 June 2023595 × 835, 277 pages (4.1 MB)PencakeBot (talk | contribs)Upload 統計研究法 (1/1) by (德)裘倍爾(E. Czuber)著 (batch task; nlc:data_416,01jh006229,79053; 民國圖書.1; 統計研究法)

The following page uses this file:

Metadata