File:Grating Diffraction vs Period.webm
Original file (WebM audio/video file, VP9, length 20 s, 804 × 804 pixels, 651 kbps overall, file size: 1.58 MB)
Captions
Summary
[edit]DescriptionGrating Diffraction vs Period.webm |
English: Diffraction from a sinusoidal grating as a function of its period. For long to intermediate periods, light is diffracted in 2 well-defined directions, but for very short periods light is not diffracted anymore. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1484182956964864007 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
[edit]\[Lambda]0 = 1.; k0 =
N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so \
all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/50; \[CapitalDelta] = 20*\[Lambda]0; (*Parameters for the grid*)
\[Sigma] = 20 \[Lambda]0; (*width of the gaussian beam*)
sourcef[x_, y_] := E^(-(x^2/(2 \[Sigma]^2))) E^(-((y + \[CapitalDelta]/ 2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
\[Phi]in = Table[Chop[sourcef[x, y]], {x, -\[CapitalDelta]/2, \[CapitalDelta]/ 2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Discretized source*)
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
imn = Table[ Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[\[Phi]in][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
stopstep[t_] := 10 (t - 1)^4 + 0.5;
frames = Table[
period = stopstep[t];
ren = Table[
If[-\[CapitalDelta]/2 < y < Cos[(2 \[Pi])/period x] - \[CapitalDelta]/2 + 3, 2, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[Transpose[(Abs[(\[Phi]in + \[Phi]s)]^2/Max[(Abs[\[Phi]in + \[Phi]s]^2)[[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[( 4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors", DataReversed -> True, Frame -> False, PlotRange -> {0, 1}]
,
ArrayPlot[ Transpose[Re[(n - 1)/5]] [[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {t, 0, 1, 1/100}];
ListAnimate[Join[Table[frames[[1]], {2}], frames, Reverse@frames]]
Licensing
[edit]This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 10:10, 21 January 2022 | 20 s, 804 × 804 (1.58 MB) | Berto (talk | contribs) | Imported media from uploads:dc09b0a6-7aa0-11ec-be16-56dbdb266599 |
You cannot overwrite this file.
File usage on Commons
The following page uses this file:
Transcode status
Update transcode statusMetadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
User comments | Created with the Wolfram Language : www.wolfram.com |
---|---|
Software used |