File:Cubic graph special points.svg
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this PNG preview of this SVG file: 500 × 600 pixels. Other resolutions: 200 × 240 pixels | 400 × 480 pixels | 640 × 768 pixels | 854 × 1,024 pixels | 1,708 × 2,048 pixels | 512 × 614 pixels.
Original file (SVG file, nominally 512 × 614 pixels, file size: 17 KB)
File information
Structured data
Captions
Summary
[edit]DescriptionCubic graph special points.svg |
English: Graph showing the relationship between the roots, turning or stationary points and inflection point of a cubic polynomial and its first and second derivatives. The vertical scale is compressed 1:50 relative to the horizontal scale for ease of viewing. Thanks to Álvaro Lozano-Robledo for a method to find a cubic function with distinct special points with non-zero integer coordinates. |
|
Source | Own work | |
Author | Cmglee | |
Other versions |
|
|
SVG development InfoField | This W3C-invalid diagram was created with Python. This diagram uses translateable embedded text. |
import re, math
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def format_sign(x): return ('%+d' % (x)).replace('+', '+ ').replace('-','− ')
def scale_x(x): return 50 * x
def scale_y(y): return -y
n_search = 20
cubic_bez_dx = 15
quad_bez_dx = 15
linear_dx = 15
fmt_out = '{id}\
|{root0}|{root1}|{root2}|{max_x}|{max_y}|{min_x}|{min_y}|{inf_x}|{inf_y}|{inf_c}|{inf_m}\
|{cubic_b}|{cubic_c}|{cubic_d}|{quad_b}|{quad_c}\
'
double_dash = '-' * 2
outss = []
outs = []
for i_pass in range(2): ## 0: to find best values, 1: output SVG
id_best = None
if (i_pass == 1):
outss = sorted(outss, key=lambda outs:[max(abs(int(outs[5])), abs(int(outs[7]))),
max(abs(int(outs[1])), abs(int(outs[3])))])
id_best = int(outss[0][0])
print(tabbify([fmt_out.replace('{','').replace('}','').split('|')] + outss))
id = 0
for k2 in range(-n_search, n_search + 1):
for k1 in range(k2 + 1, n_search + 1):
for k0 in range(k1 + 1, n_search + 1):
(root0, root1, root2) = (-k0, -k1, -k2)
if (root0 == 0 or root0 == root1 or
root1 == 0 or root1 == root2 or
root2 == 0 or root2 == root0): continue
cubic_a = 1
cubic_b = k0 + k1 + k2
cubic_c = k0 * k1 + k1 * k2 + k2 * k0
cubic_d = k0 * k1 * k2
quad_a = cubic_a * 3
quad_b = cubic_b * 2
quad_c = cubic_c
linear_a = quad_a * 2
linear_b = quad_b
if (cubic_a == 0 or quad_a == 0 or linear_a == 0 or
cubic_b == 0 or quad_b == 0 or linear_b == 0 or
cubic_c == 0 or quad_c == 0 or
cubic_d == 0): continue
sqrt_disc = (4 * (k0 ** 2 + k1 ** 2 + k2 ** 2 - quad_c)) ** 0.5
if ((quad_b + sqrt_disc) % linear_a != 0 or
(quad_b - sqrt_disc) % linear_a != 0): continue
(max_x, min_x) = [(-quad_b + sign * sqrt_disc) / linear_a for sign in (-1,1)]
quad_bez_x1 = inf_x = (max_x + min_x) / 2
linear_x0 = inf_x - linear_dx
linear_x1 = inf_x + linear_dx
cubic_bez_x0 = inf_x - cubic_bez_dx
cubic_bez_x3 = inf_x + cubic_bez_dx
(inf_y, max_y, min_y, cubic_bez_y0, cubic_bez_y3) = [
cubic_a * x ** 3 + cubic_b * x ** 2 + cubic_c * x + cubic_d
for x in (inf_x, max_x, min_x, cubic_bez_x0, cubic_bez_x3)]
quad_bez_x0 = inf_x - quad_bez_dx
quad_bez_x2 = inf_x + quad_bez_dx
(inf_m, quad_bez_y0, quad_bez_y2, cubic_bez_m0, cubic_bez_m3) = [
quad_a * x ** 2 + quad_b * x + quad_c for x in
(inf_x, quad_bez_x0, quad_bez_x2, cubic_bez_x0, cubic_bez_x3)]
inf_c = inf_y - inf_m * inf_x
quad_bez_y1 = ((linear_a * quad_bez_x0 + quad_b) * (quad_bez_x1 - quad_bez_x0) + quad_bez_y0)
cubic_bez_x1 = (3 * inf_x - cubic_bez_dx) // 3 ## not sure how to get this
cubic_bez_x2 = inf_x + (inf_x - cubic_bez_x1)
cubic_bez_y1 = cubic_bez_m0 * (cubic_bez_x1 - cubic_bez_x0) + cubic_bez_y0
cubic_bez_y2 = cubic_bez_m3 * (cubic_bez_x2 - cubic_bez_x3) + cubic_bez_y3
if (id == id_best):
path_cubic = fmt('''M {scale_x(cubic_bez_x0)},{scale_y(cubic_bez_y0)} C\
{scale_x(cubic_bez_x1)},{scale_y(cubic_bez_y1)}\
{scale_x(cubic_bez_x2)},{scale_y(cubic_bez_y2)}\
{scale_x(cubic_bez_x3)},{scale_y(cubic_bez_y3)}''')
path_quad = fmt('''M {scale_x(quad_bez_x0)},{scale_y(quad_bez_y0)} Q\
{scale_x(quad_bez_x1)},{scale_y(quad_bez_y1)}\
{scale_x(quad_bez_x2)},{scale_y(quad_bez_y2)}''')
path_linear = fmt('''M {scale_x(linear_x0)},{scale_y(linear_x0 * linear_a + linear_b)} L\
{scale_x(linear_x1)},{scale_y(linear_x1 * linear_a + linear_b)}''')
path_tangent = fmt('''M {scale_x(float(min_y - inf_c) / inf_m)!.0f},{scale_y(min_y)} L\
{scale_x(float(max_y - inf_c) / inf_m)!.0f},{scale_y(max_y)}''')
append(outs,'''\
<use xlink:href="#axes"/>
<g stroke-width="4">
<g mask="url(#mask_line)">
<path class="line_cubic" d="{path_cubic}"/>
<path class="line_quad" d="{path_quad}" stroke-dasharray="20,5"/>
<path class="line_linear" d="{path_linear}" stroke-dasharray="6,4" stroke-width="6"/>
<path class="line_tangent" d="{path_tangent}" stroke-dasharray="25,5,5,5,5,5"/>
</g>
<g class="line_concav">
<path d="M {scale_x(max_x)},{scale_y(max_y)} V 0
M {scale_x(min_x)},{scale_y(min_y)} V 0
M {scale_x(inf_x)},{scale_y(inf_y)} V 500" stroke-dasharray="20,5,5,5"/>
<path d="M -630 460 Q -630 470 -620 470 H 35 Q 45 470 45 460 M 55 460 Q 55 470 65 470 H 620 Q 630 470 630 460"/>
</g>
</g>
<g stroke-width="8">
<g class="label_cubic">
<text class="equation" x="-70" y="-630"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = </tspan><tspan class="var">x</tspan><tspan>³ {format_sign(cubic_b)}</tspan><tspan class="var">x</tspan><tspan>² {format_sign(cubic_c)}</tspan><tspan class="var">x</tspan><tspan> {format_sign(cubic_d)}</tspan></text>
<g transform="translate({scale_x(root0)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="2ex">root ({root0})</text></g>
<g transform="translate({scale_x(root1)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="2ex">root ({root1})</text></g>
<g transform="translate({scale_x(root2)}, 0)"><use xlink:href="#root"/><text x="-0.5ex" y="2ex" class="end">root ({root2})</text></g>
<g transform="translate({scale_x(max_x)},{scale_y(max_y)})"><use xlink:href="#tp" /><text x="-9ex" y="-0.8ex">turning point, stationary point & local maximum ({max_x}, {max_y})</text></g>
<g transform="translate({scale_x(min_x)},{scale_y(min_y)})"><use xlink:href="#tp" /><text x="5ex" y="2ex" class="end">turning point, stationary point & local minimum ({min_x}, {min_y})</text></g>
<g transform="translate({scale_x(inf_x)},{scale_y(inf_y)})"><use xlink:href="#ip" /><text y="-1ex">falling inflection point ({inf_x}, {inf_y})</text></g>
<!-{double_dash}
<g transform="translate(0 ,{scale_y(cubic_d)})"><use xlink:href="#yi" /><text x="0.5ex">y-intercept ({cubic_d})</text></g>
{double_dash}>
</g>
<g class="label_quad">
<text class="equation" x="-530" y="-260"><tspan class="var">f</tspan><tspan dx="0.2ex" class="var">'</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = {quad_a}</tspan><tspan class="var">x</tspan><tspan>² {format_sign(quad_b)}</tspan><tspan class="var">x</tspan><tspan> {format_sign(quad_c)}</tspan></text>
<g transform="translate({scale_x(max_x)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="-0.2ex">root ({max_x})</text></g>
<g transform="translate({scale_x(min_x)}, 0)"><use xlink:href="#root"/><text x="-0.3ex" y="-0.2ex" class="end">root ({min_x})</text></g>
<g transform="translate({scale_x(inf_x)},{scale_y(inf_m)})"><use xlink:href="#tp" /><text x="-1ex" y="2ex" class="end"><tspan>turning point, stationary point</tspan><tspan x="-1ex" dy="2ex">& local maximum ({inf_x}, {inf_m})</tspan></text></g>
<use xlink:href="#tp" transform="translate({scale_x(inf_x)},{scale_y(inf_m)})"/>
</g>
<g class="label_linear">
<text class="equation" x="-560" y="120"><tspan class="var">f</tspan><tspan dx="0.2ex" class="var">''</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = {linear_a}</tspan><tspan class="var">x</tspan><tspan> {format_sign(linear_b)}</tspan></text>
<g transform="translate({scale_x(inf_x)}, 0)"><use xlink:href="#root"/><text x="-0.5ex" y="-0.2ex" class="end">root ({inf_x})</text></g>
</g>
<g class="label_concav">
<text x="-295" y="505"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) curve concave (downwards)</tspan></text>
<text x="345" y="505"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) convex (downwards)</tspan></text>
</g>
<g class="label_tangent">
<g transform="translate(-140,-860)"><text><tspan>tangent at inflection point:</tspan><tspan x="15" dy="2ex" class="var">y</tspan><tspan> = -147</tspan><tspan class="var">x</tspan><tspan> + 433</tspan></text></g>
</g>
</g>
''')
outss.append(fmt(fmt_out).split('|'))
id += 1
out_p = fmt('width="100%" height="100%" viewBox="-640 -1024 1280 1536"')
## Compile everything into an .svg file
myself = open(__file__, 'r').read() ## the contents of this very file
file_out = open(__file__[:__file__.rfind('.')] + '.svg', 'w') ## *.* -> *.svg
try: ## use try/finally so that file is closed even if write fails
file_out.write('''<?xml version="1.0" encoding="utf-8"?><!%s
%s%s%s\n%s%s''' % ('-' + '-', ## because SVG comments cannot have 2 consecutive '-'s
myself[ : myself.find('width',myself.find('<svg'))], ## assume width specified before height/viewBox
out_p, ## replace SVG width/height/viewBox with {out_p} & dynamic SVG block with {outs} contents
myself[myself.find('>',myself.find('<svg')) : myself.find('\n',myself.find('BEGIN_'+'DYNAMIC_SVG'))],
'\n'.join(outs), myself[myself.rfind('\n',0,myself.find('END_'+'DYNAMIC_SVG')) : ]))
finally:
file_out.close()
## SVG-Python near-polyglot framework version 2 by CMG Lee (Feb 2016) -->
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following licenses:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
You may select the license of your choice.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 01:08, 4 February 2024 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Work around leading-or-trailing-nonbreaking-space-ignored rsvg bug: http://en.wikipedia.org/w/index.php?title=Wikipedia:SVG_help&diff=prev&oldid=1189400853 | |
00:59, 4 February 2024 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Fix "global minimum" and use minus signs | ||
06:35, 2 February 2024 | 512 × 614 (17 KB) | Opencooper (talk | contribs) | rv: not sure if it's something I changed or changes in the renderer, but the new MediaWiki raster conversion doesn't preserve the non-breaking spaces and uses a spindly font | ||
06:28, 2 February 2024 | 512 × 614 (17 KB) | Opencooper (talk | contribs) | proper Unicode minus sign | ||
18:18, 19 April 2019 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Use exact cubic and quadratic Bézier curves instead of approximating with polylines, update labels, shrink markers and convert to near-polyglot Python. | ||
09:44, 26 August 2013 | 512 × 614 (19 KB) | AnonMoos (talk | contribs) | remove trivial syntax error, should now validate | ||
19:30, 3 August 2012 | 512 × 614 (19 KB) | Cmglee (talk | contribs) | Add tangent at inflection point. | ||
12:49, 3 August 2012 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Fix based on comments by Duoduoduo and 188.127.120.236. | ||
21:18, 27 March 2012 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Align text labels. | ||
20:59, 25 March 2012 | 512 × 614 (17 KB) | Cmglee (talk | contribs) | Refine text labels. |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on cs.wikipedia.org
- Usage on en.wikipedia.org
- Usage on fr.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on ro.wikipedia.org
- Usage on ta.wikipedia.org
- Usage on ur.wikipedia.org
- Usage on vi.wikipedia.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Short title | cubic graph special points |
---|---|
Image title | Graph showing the relationship between the roots, turning or stationary points and inflection point of a cubic polynomial and its first and second derivatives by CMG Lee. The vertical scale is compressed 1:50 relative to the horizontal scale for ease of viewing. Thanks to Álvaro Lozano-Robledo for a method to find a cubic function with special points with integer coordinates. |
Width | 100% |
Height | 100% |