Category:Modular arithmetic
Jump to navigation
Jump to search
system of algebraic operations defined for remainders under division by a fixed positive integer; system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value—the modulus | |||||
Upload media | |||||
Instance of |
| ||||
---|---|---|---|---|---|
Subclass of |
| ||||
Part of | |||||
Different from | |||||
| |||||
Subcategories
This category has the following 4 subcategories, out of 4 total.
C
- Carmichael function (3 F)
F
- Fermat's little theorem (6 F)
Media in category "Modular arithmetic"
The following 71 files are in this category, out of 71 total.
-
0...15 plus mod.svg 1,127 × 1,407; 717 KB
-
0...15 times mod.svg 1,127 × 1,407; 701 KB
-
4Bit-2Komplement.svg 543 × 516; 24 KB
-
A knot on a clock face.svg 750 × 750; 3 KB
-
Academ A race track on a clock face.svg 750 × 750; 3 KB
-
Academ Cyclic groups on floral knot.svg 760 × 665; 4 KB
-
Academ Progressions along a knot on a clock face.svg 750 × 750; 3 KB
-
Algebra1 03 fig029 aritoro.svg 494 × 294; 87 KB
-
Algebra1 03 fig030 orol.svg 428 × 166; 60 KB
-
Anillo cíclico.png 330 × 280; 2 KB
-
Arit3mod.png 529 × 67; 2 KB
-
Aritmetica dell'orologio I.jpg 696 × 418; 80 KB
-
BeatTrackMoirePattern.ogg 1 min 30 s; 154 KB
-
Binär talrep 3 bitar 2-komplement.svg 600 × 550; 16 KB
-
Building the wheels up to wheel 3.gif 314 × 282; 2.52 MB
-
Chinese remainder theorem sieve.svg 512 × 683; 12 KB
-
Chinese remainder theorem stripes 2.svg 319 × 248; 44 KB
-
Chinese remainder theorem stripes.svg 319 × 283; 56 KB
-
Clock group.svg 560 × 245; 2 KB
-
Descomposición de aplicación lineal ej 1.png 386 × 181; 2 KB
-
Divmod ceiling.svg 411 × 213; 5 KB
-
Divmod Euclidean.svg 411 × 213; 5 KB
-
Divmod extended.svg 851 × 654; 15 KB
-
Divmod floored.svg 411 × 213; 5 KB
-
Divmod rounding.svg 411 × 213; 5 KB
-
Divmod truncated.svg 411 × 213; 5 KB
-
Divmod.svg 402 × 675; 5 KB
-
Développement en série primorielle de 0,25.jpg 3,872 × 2,592; 1.62 MB
-
Entier de Dirichlet Division.jpg 1,000 × 1,000; 73 KB
-
Entier de Dirichlet Norme.jpg 1,000 × 1,000; 97 KB
-
Ewiger Dauerkalender ab 01.01.01.png 2,338 × 1,653; 487 KB
-
Ewiger Julianischer Kalender.png 2,443 × 1,727; 517 KB
-
Ewiger Kalender gregorianisch mit Jahrhunderten.png 2,338 × 1,652; 469 KB
-
Ewiger Kalender gregorianisch.png 2,145 × 1,428; 443 KB
-
Ewiger orthodoxer Kalender.png 2,004 × 1,530; 479 KB
-
Fermat deux carrés.jpg 1,735 × 1,696; 134 KB
-
GenerateEvenZero.svg 590 × 333; 6 KB
-
GeoplanPpcm.png 1,128 × 300; 9 KB
-
Iterated subtraction of d until modulo d.svg 660 × 825; 4 KB
-
Itérer une soustraction de d jusque modulo d.svg 660 × 825; 4 KB
-
Julianischer Kalender.svg 512 × 362; 351 KB
-
Lhun alg.png 804 × 487; 14 KB
-
McDonalds Receipt Luhn Algorithm.png 1,703 × 3,847; 1.22 MB
-
ModedLine.JPG 467 × 86; 8 KB
-
ModT basics.PNG 931 × 660; 186 KB
-
ModularGroup-FundamentalDomain-01.png 619 × 311; 23 KB
-
Modulo 6 Visualization.png 1,000 × 1,000; 66 KB
-
Modulo Maths.png 1,000 × 1,000; 66 KB
-
Normal subgroup illustration.png 648 × 623; 48 KB
-
Normal subgroup illustration.svg 920 × 920; 3 KB
-
Parallel remainder cycles 6 5.svg 567 × 71; 69 KB
-
Pascal triangle modulo 3.png 1,478 × 732; 18 KB
-
Pascal triangle modulo 5.png 1,294 × 638; 14 KB
-
PascalRuban7.svg 310 × 325; 23 KB
-
RecursiveEven.svg 306 × 36; 3 KB
-
Rolling wheel animation.gif 998 × 117; 322 KB
-
Rotation with rational angle 13 over 34.svg 709 × 709; 10 KB
-
Rotation with rational angle 3 over 7.svg 709 × 709; 2 KB
-
Rotations.svg 220 × 240; 8 KB
-
Sun Tzu Chinese remainder theorem.svg 512 × 768; 9 KB
-
Table3.jpg 1,088 × 1,088; 1,023 KB
-
Table4.jpg 1,088 × 1,088; 1,022 KB
-
Tablero producto anillos cíclicos 1.png 359 × 213; 2 KB
-
Tablero producto anillos cíclicos 2.png 274 × 222; 2 KB
-
Taco Bell Receipt Luhn Algorithm.png 1,366 × 3,890; 1.57 MB
-
Thue-Morse binary digit sum.svg 512 × 1,024; 18 KB
-
Timestable.gif 219 × 220; 58 KB
-
Timestable2.gif 245 × 245; 7.09 MB
-
Tractor Supply Receipt Luhn Algorithm.png 1,760 × 4,688; 2.64 MB
-
Vector space F5^2.pdf 714 × 589; 3 KB