Category:Lattice theory

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
English: In mathematics, a lattice is a partially ordered set (also called a poset) in which any two elements have a unique supremum (the elements' least upper bound; called their join) and an infimum (greatest lower bound; called their meet). Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These "lattice-like" structures all admit order-theoretic as well as algebraic descriptions.
<nowiki>teoria dei reticoli; théorie des treillis; тэорыя кратак; теория решеток; Verbandstheorie; teoria de reticulados; teorija mrež; 束論; teoria de reticulados; gitterteori; gitterteori; teoria de reticles; 격자 이론; lattice theory; latisa teorio; teorie svazů; hálóelmélet; раздел алгебры, в котором изучаются частично упорядоченные множества; branche des mathématiques; área da matemática que estuda reticulados; branch of mathematics that studies order-theoretic lattices; área da matemática que estuda reticulados; obor matematiky, část teorie uspořádání věnující se svazům; 격자를 연구하는 수학의 분야; 격자론</nowiki>
lattice theory 
branch of mathematics that studies order-theoretic lattices
Upload media
Instance of
Part of
Authority file
Edit infobox data on Wikidata
 See also category: Lattices (group theory).

Subcategories

This category has the following 8 subcategories, out of 8 total.

Pages in category "Lattice theory"

This category contains only the following page.

Media in category "Lattice theory"

The following 72 files are in this category, out of 72 total.