File:Saturn's rings in visible light and radio-ar.jpg
Original file (5,776 × 864 pixels, file size: 852 KB, MIME type: image/jpeg)
Captions
Summary
[edit]DescriptionSaturn's rings in visible light and radio-ar.jpg |
العربية: فسيفساء لحلقات زحل في الضوء المرئي وإشارات الراديو. مُلتقطة بواسطة المسبار الفضائي كاسيني.
English: Cassini instruments provide complementary information about the structure of Saturn's rings. Narrow and wide angle cameras provide images in the visible region of the electromagnetic spectrum much like a digital camera does. The images have information about how the ring structure differs both with distance from the planet and with position around the equatorial circle. However, resolution is usually limited to few kilometers at best.
Radio and stellar occultations of the rings also provide important information about ring structure, but only along a one-dimensional track through the rings. The radial resolution can be as fine as 50 meters (164 feet). An "image" is then constructed by assuming circular symmetry over the ring region of interest. Color is usually added to encode other information related to the observed structure. This image compares structure of Saturn's rings observed by these two approaches. The upper half is a natural color mosaic of images of the illuminated side of the rings by the Cassini narrow-angle camera (see PIA06175). The bottom simulated image is constructed from a radio occultation observation conducted on May 3, 2005. For another view created using this process, see PIA07872. Color in the lower image is used to represent information about ring particle sizes. Three simultaneous radio signals of 0.94, 3.6, and 13 centimeter wavelength (Ka-, X-, and S-bands) were sent from Cassini through the rings to Earth. The observed change of each signal as Cassini moved behind the rings provided a profile of the distribution of ring material as a function of distance from Saturn, or an optical depth profile. This simulated image was constructed from the measured optical depth profiles. Shades of purple, primarily over most of the middle ring, the B ring, and the inner portion of the outer ring, the A ring, indicate regions where there is a lack of particles less than 5 centimeters (about 2 inches) in diameter. Green and blue shades indicate regions where there are particles of sizes smaller than 5 centimeters (2 inches) and 1 centimeter (less than one third of an inch), respectively, primarily in the outer A ring and within most of the inner ring, the C ring. The saturated broad white band near the middle of the B ring is the densest region of the rings, over which two of the three radio signals were blocked at 10-kilometer (6-mile) resolution, preventing accurate color representation. From other evidence in the radio observations, all ring regions appear to be populated by a broad range particle size distribution that extends to boulder sizes (several to many meters across). The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The radio science team is based at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo. Français : Les instruments de la sonde Cassini fournissent des information différentes et complémentaires sur la structure des anneaux de Saturne. Les appareils photo à grand angle et à longue focale font des photos d'une façon très comparable à celle d'un appareil numérique. Ces images permettent de voir la structure des anneaux à la fois en fonction de la distance à la planète et le long du plan équatorial. Cependant la résolution est limitée à quelques kilomètres. Les ondes radio et les occultations stellaires permettent d'obtenir une bien meilleure résolution (50 mètres), mais uniquement dans le sens radial. Une image est reconstruite en supposant que les anneaux ont une symétrie radiale dans la zone considérée. De la couleur est souvent ajoutée pour donner d'autres informations sur la structure observée. |
Date | 1 September 2017 (upload date) |
Source | Derivative from this file |
Author |
|
Other versions |
|
This is a retouched picture, which means that it has been digitally altered from its original version. Modifications: Translated to Arabic - عُرِبَت. The original can be viewed here: Saturn's rings in visible light and radio.jpg: . Modifications made by أنور بن الحسين.
|
|
Licensing
[edit]Public domainPublic domainfalsefalse |
This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.) | ||
Warnings:
|
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 21:32, 1 September 2017 | 5,776 × 864 (852 KB) | أنور (talk | contribs) | User created page with UploadWizard |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on ar.wikipedia.org
- حلقات زحل
- ويكيبيديا:صور مختارة/الفضاء والكون/في الفهم
- بوابة:علم الفلك/صورة مختارة
- ويكيبيديا:ورشة الصور/أرشيف 29
- ويكيبيديا:ترشيحات الصور المختارة/حلقات زحل في الضوء المرئي والراديو
- ويكيبيديا:صورة اليوم المختارة/ديسمبر 2017
- قالب:صورة اليوم المختارة/2017-12-23
- بوابة:علم الفلك/صورة مختارة/49
- ويكيبيديا:صورة اليوم المختارة/أبريل 2022
- قالب:صورة اليوم المختارة/2022-04-07
- Usage on ckb.wikipedia.org
- Usage on en.wikiversity.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Orientation | Normal |
---|