File:Pillars of creation - JWST, MIRI - STScI-01GFRYYRTCTMX197BY86MBFCR9.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,987 × 1,817 pixels, file size: 4.06 MB, MIME type: image/png)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: NASA’s James Webb Space Telescope’s mid-infrared view of the Pillars of Creation strikes a chilling tone. Thousands of stars that exist in this region disappear – and seemingly endless layers of gas and dust become the centerpiece.

The detection of dust by Webb’s Mid-Infrared Instrument (MIRI) is extremely important – dust is a major ingredient for star formation. Many stars are actively forming in these dense blue-gray pillars. When knots of gas and dust with sufficient mass form in these regions, they begin to collapse under their own gravitational attraction, slowly heat up – and eventually form new stars.

Although the stars appear missing, they aren’t. Stars typically do not emit much mid-infrared light. Instead, they are easiest to detect in ultraviolet, visible, and near-infrared light. In this MIRI view, two types of stars can be identified. The stars at the end of the thick, dusty pillars have recently eroded the material surrounding them. They show up in red because their atmospheres are still enshrouded in cloaks of dust. In contrast, blue tones indicate stars that are older and have shed most of their gas and dust.

Mid-infrared light also details dense regions of gas and dust. The red region toward the top, which forms a delicate V shape, is where the dust is both diffuse and cooler. And although it may seem like the scene clears toward the bottom left of this view, the darkest gray areas are where densest and coolest regions of dust lie. Notice that there are many fewer stars and no background galaxies popping into view.

Webb’s mid-infrared data will help researchers determine exactly how much dust is in this region – and what it’s made of. These details will make models of the Pillars of Creation far more precise. Over time, we will begin to more clearly understand how stars form and burst out of these dusty clouds over millions of years.

Contrast this view with Webb’s near-infrared light image.

MIRI was contributed by ESA and NASA, with the instrument designed and built by a consortium of nationally funded European Institutes (the MIRI European Consortium) in partnership with JPL and the University of Arizona. Credits:

SCIENCE: NASA, ESA, CSA, STScI

IMAGE PROCESSING: Joseph DePasquale (STScI), Alyssa Pagan (STScI)
Date
Source https://webbtelescope.org/contents/media/images/2022/053/01GFRYSFM89AFADVAA0W625BSB
Author

Credits:

SCIENCE: NASA, ESA, CSA, STScI

IMAGE PROCESSING: Joseph DePasquale (STScI), Alyssa Pagan (STScI)
Other versions

Licensing

[edit]
Public domain This file is in the public domain because it was created by NASA, ESA and CSA. NASA Webb material is copyright-free and may be freely used as in the public domain without fee, on the condition that only NASA, STScI, and/or ESA/CSA is credited as the source of the material. This license does not apply if source material from other organizations is in use.
The material was created for NASA by Space Telescope Science Institute under Contract NAS5-03127. Copyright statement at webbtelescope.org.
For material created by the European Space Agency on the esawebb.org site, use the {{ESA-Webb}} tag.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:06, 29 October 2022Thumbnail for version as of 21:06, 29 October 20221,987 × 1,817 (4.06 MB)Fabian RRRR (talk | contribs)Uploaded a work by Credits: SCIENCE: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI), Alyssa Pagan (STScI) from https://webbtelescope.org/contents/media/images/2022/053/01GFRYSFM89AFADVAA0W625BSB with UploadWizard

File usage on other wikis

The following other wikis use this file:

View more global usage of this file.

Metadata