File:Permo triassic boundary temperature comparison co2 400 5000 latitude 60 south 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (698 × 636 pixels, file size: 1.7 MB, MIME type: image/png)

Captions

Captions

Permo triassic temperature comparison between CO2 400 5000, at some location atlatitude 60 south

Summary

[edit]
Description
English: Permo_triassic boundary temperature comparison between CO2 400 5000, at some location atlatitude 60 south
Date
Source Own work
Author Merikanto

This image is based on Exoplasim and Paleodem, and Patrmian-Triassic CO2 estimations, that swings ca. 400-9000 ppm. SciDavis viusalization


This image is based on Paleodem, Exoplasim, Koppenpasta.

Visualization with Krita.

Visualization data producing stuff:

File:Permian_triassic_boundary_growing_degree_days_above_5_degrees_celsius_1.png

https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/

PaleoDEM Resource – Scotese and Wright (2018) 11 August, 2018 by Sabin Zahirovic

https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright_2018_Maps_1-88_1degX1deg_PaleoDEMS_nc.zip

PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic

Scotese, Christopher R, & Wright, Nicky M. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5460860

Scotese, Christopher R; Wright, Nicky M https://zenodo.org/record/5460860

https://zenodo.org/record/5460860/files/Scotese_Wright_2018_Maps_1-88_6minX6min_PaleoDEMS_nc.zip?download=1


Exoplasim

https://github.com/alphaparrot/ExoPlaSim
https://pypi.org/project/exoplasim/
https://exoplasim.readthedocs.io/en/latest/


Exoplasim code


"month","T1","P1","T2","P2" 1,-1.92569580078123,49.0193021278174,9.88881835937502,87.7260329275487 2,-0.926763916015602,45.5889497288808,8.55239257812502,97.3504610044529 3,-1.61765136718748,36.2332376454333,11.2700439453125,80.4413836533513 4,-0.750402832031227,39.2909265315211,9.82833251953127,36.7016661925845 5,0.378778076171898,38.0891333961131,9.83236083984377,167.809737126845 6,4.27053222656252,53.8436213759041,13.2559448242188,48.9441852295158 7,7.58608398437502,8.12511992407394,14.5347229003906,76.1669011893673 8,13.5453430175781,36.827045924781,17.0955444335938,131.939014465843 9,10.7181335449219,38.7473319349851,14.1101928710938,60.6311051029707 10,6.72841796875002,32.0244865633867,15.9605041503906,65.6890792384957 11,7.57381591796877,82.7648162101013,13.38564453125,151.610888246978 12,5.70882568359377,57.006507623214,10.5905395507813,99.5348755736813

Data extraction code, also has bioclim soil hydrology code


Exoplasim Python 3 code like this

Used here Ubuntu, Anaconda, python3.9 and important: exoplasim version 3.2.2

pip install exoplasim[netcdf4]==3.2.2

    1. Exoplasim planet running code, python3, ubuntu
  1. attempt to create exoplasim restart code
    1. you can continue running
    2. based on previous run.
    1. 08.12.2023 0000.0006b
    1. convert to T21, input netcdf
    2. load one lon, lat, z grid
    3. or Tarasov glac1d grid
    1. MPI NOTE: if you use more than
    1. one processor, you cannot in most cases run MPI in root
    2. you can use even number of process in mpi: 2, 4, 6 ..
    1. in ubuntu you must install
    1. pip3 install exoplasim[netCDF4]
    2. not
    3. "sudo pip3 install exoplasim[netCDF4]"

import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp2d import netCDF4

import exoplasim as exo

NLAT=0 NLON=0


def writeSRA(name,kcode,field,NLAT,NLON):

   label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)

def writeSRA2(label,kcode,field,NLAT,NLON):

   #label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)

def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): nlat1=len(xoutlats1) nlon1=len(xoutlons1) #indata_set1=indata1 print(outfilename1) ncout1 = netCDF4.Dataset(outfilename1, 'w', format='NETCDF4') outlat1 = ncout1.createDimension('lat', nlat1) outlon1 = ncout1.createDimension('lon', nlon1) outlats1 = ncout1.createVariable('lat', 'f4', ('lat',)) outlons1 = ncout1.createVariable('lon', 'f4', ('lon',)) outvalue1 = ncout1.createVariable(outvarname1, 'f4', ('lat', 'lon',)) outvalue1.units = 'Unknown' outlats1[:] = xoutlats1 outlons1[:] = xoutlons1 outvalue1[:, :] =xoutvalue1[:] ncout1.close() return 0

def loadnetcdf_single_tomem(infilename1, invarname1): global cache_lons1 global cache_lats1 print(infilename1) inc1 = netCDF4.Dataset(infilename1) inlatname1="lat" inlonname1="lon" inlats1=inc1[inlatname1][:] inlons1=inc1[inlonname1][:] cache_lons1=inlons1 cache_lats1=inlats1 indata1_set1 = inc1[invarname1][:] dim1=indata1_set1.shape nlat1=dim1[0] nlon1=dim1[1] inc1.close() return (indata1_set1)

def create_sras(topo):

global NLAT global NLON

topo2=np.copy(topo) masko=np.copy(topo) topo2[topo2 < 1] = 0 masko[masko < 1] = 0 masko[masko > 0] = 1 grid=np.flipud(masko) name="Example" writeSRA(name,129,topo,NLAT,NLON) writeSRA(name,172,grid,NLAT,NLON) writeSRA2("topo.sra",129,topo2,NLAT,NLON) writeSRA2("landmask.sra",172,grid,NLAT,NLON) return(0)

def convert_to_t21(infilename1, outfilename1):

global NLAT global NLON

indimx=361 indimy=181 #indimx=360 #indimy=360

## t21 64x32 shapex=64 shapey=32 NLAT=shapex NLON=shapey nc = netCDF4.Dataset(infilename1)

inlats=nc['lat'][:] inlons=nc['lon'][:] #print(inlats) #print(inlons) latlen=len(inlats) lonlen=len(inlons)


#print(lonlen, latlen)

indimx=lonlen indimy=latlen

dem=nc['z'] #dem=np.flipud(dem000) dem2=np.copy(dem) #dem2[dem2 < 0] = 0 #plt.imshow(dem,cmap='gist_earth') #plt.imshow(dem2,cmap='gist_earth') #plt.show() #quit(0) lts=[85.7606, 80.2688, 74.7445, 69.2130, 63.6786, 58.1430, 52.6065, 47.0696, 41.5325,35.9951, 30.4576, 24.9199, 19.3822, 13.8445, 8.3067, 2.7689, -2.7689, -8.3067, -13.8445, -19.3822, -24.9199, -30.4576, -35.9951, -41.5325, -47.0696, -52.6065, -58.1430, -63.6786, -69.2130, -74.7445, -80.2688, -85.7606]

## lns=[0, 5.6250, 11.2500, 16.8750, 22.5000, 28.1250, 33.7500 ,39.3750, 45.0000, 50.6250, 56.2500, 61.8750, 67.5000, 73.1250, 78.7500, 84.3750, 90.0000, 95.6250, 101.2500, 106.8750, 112.5000, 118.1250, 123.7500, 129.3750, 135.0000, 140.6250, 146.2500, 151.8750, 157.5000, 163.1250, 168.7500, 174.3750, 180.0000, 185.6250, 191.2500, 196.8750, 202.5000, 208.1250, 213.7500, 219.3750, 225.0000, 230.6250, 236.2500, 241.8750, 247.5000, 253.1250, 258.7500, 264.3750, 270.0000, 275.6250, 281.2500, 286.8750, 292.5000, 298.1250, 303.7500, 309.3750, 315.0000, 320.6250, 326.2500, 331.8750, 337.5000, 343.1250, 348.7500, 354.3750]


ly2=len(lts) lx2=len(lns) shapex=lx2 shapey=ly2

#print("sheip") #print(shapex, shapey)


lons, lats = np.meshgrid(lns,lts) #print (lts) #print (lns) new_W, new_H = (shapey,shapex) xrange = lambda x: np.linspace(0, 360, x) f2 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #f2 = interp2d(range(indimx), range(indimy), dem2, kind="cubic") demo = f2(xrange(shapex), xrange(shapey)) #plt.imshow(demo) #plt.show() #quit(0) f3 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #masko = f3(xrange(shapex), xrange(shapey)) #topo=np.flipud(demo) topo=np.copy(demo)

#grid=np.fliplr(masko) #def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): savenetcdf_single_frommem(outfilename1, "z", topo,lts,lns)

return(topo,lons,lats)

def load_glac1d_dem(indatafile, outdatafile, a_yr): # load dem from Tarsaov GLAC1d anno domini 2021 global NLAT global NLON yr=a_yr

lok=int(abs(yr/100-260))

# tarasov ice 26k nc = netCDF4.Dataset(indatafile1)

#print(nc) eisbase=nc['ICEM'] inlats=nc['YLATGLOBP5'][:] inlons=nc['XLONGLOB1'][:]

dem=nc['HDCB'][lok] #dem=np.flipud(dem000) #print (dem) #print (np.shape(dem)) #plt.imshow(dem,cmap='gist_earth')


savenetcdf_single_frommem(outdatafile, "z",dem,inlats,inlons) return(0)


    1. maybe nok

def convert_to_t42(infilename1, outfilename1): ## ONLY attempi! to create T42! global NLAT global NLON

indimx=361 indimy=181


## t42 64x32

#shapex=64 #shapey=32

shapex=128 shapey=64 #shapey=63


NLAT=shapex NLON=shapey nc = netCDF4.Dataset(infilename1)

inlats=nc['lat'][:] inlons=nc['lon'][:]

latlen=len(inlats) lonlen=len(inlons)

indimx=lonlen indimy=latlen

dem=nc['z']

#dem=np.flipud(dem000) dem2=np.copy(dem)

## test t21


tdx=360.0/shapex #tdy=180.0/shapey

tdy=(90.0-85.706)/2

minix=0.0 maksix=360-tdx maksiy=90-tdy miniy=-90+tdy


#print(90-tdy) #

#print(miniy) #print(maksiy)

#quit(-1)

#lns=np.linspace(minix, maksix, num=shapex) #lts=np.linspace(maksiy, miniy, num=shapey) ## jn WARNING 90!

lts=[87.8638, 85.0965 ,82.3129, 79.5256, 76.7369 ,73.9475 ,71.1578, 68.3678, #ok 65.5776, 62.7874, 59.9970 ,57.2066, 54.4162, 51.6257, 48.8352, 46.0447, 43.2542, 40.4636, 37.6731 ,34.8825, 32.0919, 29.3014, 26.5108, 23.7202, 20.9296, 18.1390, 15.3484 ,12.5578, 9.7671, 6.9765, 4.1859, 1.3953, -1.3953, -4.1859, -6.9765, -9.7671, -12.5578, -15.3484, -18.1390, -20.9296, -23.7202,-26.5108, -29.3014 ,-32.0919, -34.8825, -37.6731, -40.4636,-43.2542, -46.0447,-48.8352, -51.6257, -54.4162, -57.2066, -59.9970, -62.7874, -65.5776, -68.3678,-71.1578 ,-73.9475, -76.7369 ,-79.5256, -82.3129, -85.0965, -87.8638]

lns=[0.0000 ,2.8125, 5.6250, 8.4375, 11.2500, 14.0625 ,16.8750 ,19.6875, 22.5000,25.3125, 28.1250, 30.9375 ,33.7500,36.5625 ,39.3750, 42.1875, 45.0000,47.8125, 50.6250, 53.4375, 56.2500, 59.0625 ,61.8750, 64.6875, 67.5000, 70.3125, 73.1250, 75.9375, 78.7500, 81.5625, 84.3750, 87.1875, 90.0000, 92.8125, 95.6250 ,98.4375 ,101.2500, 104.0625, 106.8750, 109.6875, 112.5000, 115.3125, 118.1250, 120.9375,123.7500 ,126.5625 ,129.3750, 132.1875, 135.0000, 137.8125, 140.6250 ,143.4375, 146.2500 ,149.0625, 151.8750 ,154.6875, 157.5000, 160.3125, 163.1250, 165.9375, 168.7500, 171.5625 ,174.3750, 177.1875, 180.0000, 182.8125, 185.6250 ,188.4375, 191.2500, 194.0625, 196.8750, 199.6875, 202.5000, 205.3125, 208.1250, 210.9375, 213.7500 ,216.5625, 219.3750 ,222.1875, 225.0000, 227.8125, 230.6250 ,233.4375, 236.2500, 239.0625, 241.8750, 244.6875, 247.5000, 250.3125, 253.1250, 255.9375, 258.7500, 261.5625, 264.3750, 267.1875, 270.0000, 272.8125, 275.6250, 278.4375, 281.2500 ,284.0625 ,286.8750, 289.6875, 292.5000, 295.3125, 298.1250, 300.9375, 303.7500 ,306.5625, 309.3750, 312.1875, 315.0000, 317.8125, 320.6250, 323.4375, 326.2500, 329.0625 ,331.8750, 334.6875, 337.5000, 340.3125, 343.1250, 345.9375, 348.7500, 351.5625 ,354.3750 ,357.1875]


#lns=

#print (lts) #print (lns)

#print (len(lns),len(lts)) #quit(-1)

ly2=len(lts) lx2=len(lns) shapex=lx2 shapey=ly2

#print("sheip") #print(shapex, shapey)


lons, lats = np.meshgrid(lns,lts)

new_W, new_H = (shapey,shapex) xrange = lambda x: np.linspace(0, 360, x) f2 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") demo = f2(xrange(shapex), xrange(shapey)) f3 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") topo=demo

savenetcdf_single_frommem(outfilename1, "z", topo,lts,lns)

return(topo,lons,lats)

    1. exoplasim ,,,

def exo_runner_restarting(firstrun,a_input_dem1, a_gridtype, a_layers, a_years,a_timestep,a_snapshots,a_ncpus,a_eccentricity,a_obliquity,a_lonvernaleq,a_pCO2):

output_format=".nc"

a_pO2=1-a_pCO2-0.79 a_pN2=(1-0.21-a_pCO2)

print("Process input grid, to type ",a_gridtype)

if(a_gridtype=="T21"): print("T21") topo, lons, lats=convert_to_t21(a_input_dem1,"demT21.nc") if(a_gridtype=="T42"): print("T42") topo, lons, lats=convert_to_t42(a_input_dem1, "demT42.nc")

create_sras(topo)

print("Creating exoplasim object ")

testplanet= exo.Earthlike(workdir="planet_run",modelname="PLANET",ncpus=a_ncpus,resolution=a_gridtype,layers=a_layers, outputtype=output_format, crashtolerant=True)

glaciers1= { "toggle": True, "mindepth":2, "initialh":-1 }

fluxi1=1338

testplanet.configure( startemp=5772.0, flux=fluxi1,# Stellar parameters eccentricity=a_eccentricity, obliquity=a_obliquity, lonvernaleq=a_lonvernaleq, fixedorbit=True, # Orbital parameters rotationperiod=1, # Rotation topomap="topo.sra", landmap="landmask.sra", radius=1.0, gravity=9.80665, #stormclim=False,

               vegetation=2,                               #toggles vegetation module; 1 for static vegetation, 2 to allow growth
               vegaccel=1, 

seaice=True, maxsnow=-1, glaciers=glaciers1, pN2=a_pN2, pCO2=a_pCO2, pO2=a_pO2, ozone=True, # Atmosphere timestep=a_timestep, snapshots=0, ## jos a_snapshots, vie muistia! wetsoil=True, physicsfilter="gp|exp|sp", restartfile="ressus" ) # Model dynamics


testplanet.exportcfg()

runc1=1 n=0

if(firstrun==1): print("Creating first restart.") print("Running ExoPlasim ... ") testplanet.run(years=1,crashifbroken=True) lon = testplanet.inspect("lon") lat = testplanet.inspect("lat") ts =testplanet.inspect("tsa",tavg=True) tsavg=np.mean(ts)-273.15 print("Year: ",n," tsa: ",tsavg) savename = 'ressu' testplanet.finalize(savename,allyears=False,clean=False,keeprestarts=True) testplanet.save(savename)

looplen=a_years1

peen=0 runc1=1


for n in range(0,looplen): print("Loop year ",n) testplanet.modify(flux=fluxi1) #number of output times (months) in the output files testplanet.exportcfg() runc1=1

testplanet.run(years=1,crashifbroken=True)

lon = testplanet.inspect("lon") lat = testplanet.inspect("lat") ts =testplanet.inspect("tsa",tavg=True) tsavg=np.mean(ts)-273.15

print("Year: ",n," tsa: ",tsavg)

savename = 'ressu'+str(runc1) testplanet.finalize(savename,allyears=False,clean=False,keeprestarts=True) testplanet.save(savename)


print("Return.") return(0)


print(" Exoplasim simulation restart code ---")

    1. jn warning maybe nok
  1. input_dem='./indata/indem.nc'
  2. input_dem='./indata/Map22_PALEOMAP_1deg_Mid-Cretaceous_95Ma.nc'
  3. input_dem='./indata/Map14_PALEOMAP_1deg_Paleocene_Eocene_Boundary_55Ma.nc'
  4. input_dem='/indata/Map13_PALEOMAP_1deg_Early_Eocene_50Ma.nc'
  5. input_dem='./indata/Map12_PALEOMAP_1deg_early_Middle_Eocene_45Ma.nc'
  6. input_dem='./indata/Map18_PALEOMAP_1deg_Late_Cretaceous_75Ma.nc' ## OK
  7. input_dem='./indata/Map20_PALEOMAP_1deg_Late_Cretaceous_85Ma.nc' ## nok
  8. input_dem='./indata/Map24_PALEOMAP_1deg_Early Cretaceous_105Ma.nc' ## nok
  9. input_dem='./indata/Map17_PALEOMAP_1deg_Late_Cretaceous_70Ma.nc' ##nok
    1. input_dem='./indata/Map19_PALEOMAP_1deg_Late_Cretaceous_80Ma.nc'
  1. input_dem="./indata/Map16_PALEOMAP_1deg_KT_Boundary_65Ma.nc"
  1. input_dem="./indata/Map43_PALEOMAP_1deg_Late_Triassic_200Ma.nc"
  1. input_dem='./indata/Map19_PALEOMAP_1deg_Late_Cretaceous_80Ma.nc' ## OK
  1. input_dem='./indata/Map21_PALEOMAP_1deg_Mid-Cretaceous_90Ma.nc' #90ma

input_dem='./maps1/Map49_PALEOMAP_1deg_Permo-Triassic Boundary_250Ma.nc' # PT raja co2 1600. jopa 3000-4000

  1. input_dem='./indata/Map57_PALEOMAP_1deg_Late_Pennsylvanian_300Ma.nc' ## Late Pennsylcanian ice, co2 200? 250?
  1. input_dem="./indata/Map56_PALEOMAP_1deg_Early_Permian_295Ma.nc"
  1. indatafile1='./indata/TOPicemsk.GLACD26kN9894GE90227A6005GGrBgic.nc'
  1. input_dem="origodem.nc"
  2. a_yr=14500
    1. load_glac1d_dem(indatafile1, input_dem, 14500)
    1. input one de scotese palaeomap dem!
  1. def convert_to_t42(infilename1, outfilename1):
  1. topo, lons, lats=convert_to_t21(input_dem, "demT21.nc")
  1. topo, lons, lats=convert_to_t42(input_dem, "demT42.nc")
  1. plt.imshow(topo,cmap='gist_earth')
  1. plt.show()
  1. input_dem="./sand.nc" ##dem of desert planet

a_modelname1="planet" a_workdir1="planet_run"

a_runsteps1=200 a_years1=a_runsteps1 a_timestep1=30 a_snapshots1=0 a_ncpus1=4 a_layers1=8 a_outputtype1=".nc"

  1. a_resolution1="T42"

a_resolution1="T21" a_precision1=4 a_crashtolerant1=True a_landmap1="landmask.sra" a_topomap1="topo.sra"

    1. nowadays ca 0 BP
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.44
  3. a_lonvernaleq1=102.7
  4. a_pCO21=360e-6
    1. 10000 yrs ago
  1. a_eccentricity1=0.0194246086670259
  2. a_obliquity1=24.230720588
  3. a_lonvernaleq1=295.26651297
  4. a_pCO21=265e-6
    1. 14500 yrs ago
  1. a_eccentricity1=0.019595
  2. a_obliquity1=23.6801
  3. a_lonvernaleq1=221.5
  4. (229.64+213.3)/2
  5. a_pCO21=210e-6
    1. 25000 yrs ago
  1. a_eccentricity1=0.0178681374211005
  2. a_obliquity1= 22.408850897
  3. a_lonvernaleq1=49.92
  4. a_pCO21=180e-6
    1. cretaceous

a_eccentricity1=0.0167022 a_obliquity1=23.441

      1. a_lonvernaleq1=282.7

a_lonvernaleq1=282.7

  1. a_pCO21=900.0e-6
  2. a_pCO21=500.0e-6
  3. a_pCO21=1200.0e-6

a_pCO21=3000.0e-6


  1. a_pCO21=700.0e-6


    1. early permian 295 ma
    2. late pennsylvanian 300 ma
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.441
  3. a_lonvernaleq1=282.7
  4. a_pCO2=250.0e-6 ## ca 200 - 250 ppmvol
  5. a_pCO21=180.0e-6
  6. a_pCO21=100.0e-6
    1. permo-triassic boundary ca 250 ma
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.441
  3. a_lonvernaleq1=282.7
  4. a_pCO21=1600.0e-6 ## cal1600 ppmvol 3000 ? 2000-4000

print("Exoplasim ...")

    1. if you run simu first time, you must set
  1. firstrun=1
  1. firstrun=1

firstrun=1 a_years1=500

exo_runner_restarting(firstrun, input_dem, a_resolution1, a_layers1, a_years1,a_timestep1,a_snapshots1,a_ncpus1,a_eccentricity1,a_obliquity1,a_lonvernaleq1,a_pCO21)


print(".")




Output "bioclim" poist processing code



    1. exoplasim output "R" bioclim, meteor test
    1. 09.12.2023 0000.0003a

library(stringr) library(raster) library(terra) library(ncdf4) library(bioclim) library(meteor)

library(ggplot2)


transposeXYZ<-function(x){

   y <- array(NA,c(dim(x)[2],dim(x)[1],dim(x)[3]))
   for(i in 1:dim(x)[3]){
       y[,,i] <- t(x[,,i])
   }
   return (y)

}



meteor1<-function(indname1, lon1, lat1)

{

 ## boilerplate code for loading vriables
   nc1<-nc_open(indname1)
   lons1<-ncvar_get(nc1,'lon')
   lats1<-ncvar_get(nc1,'lat')
   tas1<-ncvar_get(nc1,'tas')
   pr1<-ncvar_get(nc1,'pr')
   hur1<-ncvar_get(nc1,'hur')
   ps1<-ncvar_get(nc1,'ps')
   lac1<-lats1[lats1>(lat1-3)]
   lac2<-lac1[lats1<(lat1+3)]
   abslat1=lac2[1]
   latdex1<-which(lats1==abslat1)
   loc1<-lons1[lons1>(lon1-3)]
   loc2<-loc1[lons1<(lon1+3)]
   abslon1=loc2[1]
   londex1<-which(lons1==abslon1)


   lata1<-abslat1
   lona1<-abslon1
   temps1<-tas1[londex1, latdex1,]-273.15
   precs1<-pr1[londex1, latdex1,]*3600*24*30.5*1000
   ress1<-ps1[londex1, latdex1,]
   rhs1<-hur1[londex1, latdex1,8,]

#print(rhs1)

  1. quit(-1)


   months1<-1:12


   meantemp1<-mean(temps1)
   sumpr1<-sum(precs1)
 #  print(temps1)
 #  print(precs1)
   print("Tann")
   print(meantemp1)
   print("Prann")
   print(sumpr1)
  1. print("Pressure at surf")
 #  print(ress1)
   
 #  print("SVP")
   svp1<-SVP(temps1)
#   print(svp1)
 #    print("VP")  
   vp1<-VP(temps1, rhs1)
 #  print(vp1)  


days1<-1:12 days1<-(days1*30.5)-15

#print("days") #print(days1)

baserad1<-ExtraTerrestrialRadiation(days1, lata1, sc=1338, FAO=FALSE)

  1. print("solrad")
  2. print(baserad1)

solrad1<-as.numeric(baserad1)[1:12] daylens1<-as.numeric(baserad1)[13:24]

  1. print (solrad1)
  2. print (daylens1)

makkink1<-ET0_Makkink(temps1, rhs1, ress1, solrad1) makkink2=makkink1*30.3 ## days to months print("makkink") print(makkink2)

pet_makkink2=sum(makkink2) print(pet_makkink2)

ptopet_makkink_from_sums<-(100*sumpr1)/pet_makkink2 print("makkinkptopet_percent") print(ptopet_makkink_from_sums)

#

   ptopets_makkinks=(100*precs1)/makkink2

print(ptopets_makkinks) print(mean(ptopets_makkinks))

#quit("yes") }






bioclimater1<-function(indname1) {

   crs1<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
   nc1<-nc_open(indname1)
   lons1<-ncvar_get(nc1,'lon')
   lats1<-ncvar_get(nc1,'lat')
   tas1<-ncvar_get(nc1,'tas')
   pr1<-ncvar_get(nc1,'pr')


   tas0<-tas1-273.15
   pres0<-pr1*3600*24*30.5*1000


   #tas1<-t(matrix(tas0))
   tas1<-transposeXYZ(tas0)
   pres1<-transposeXYZ(pres0)
   #print(dim(tas0))
   #print(dim(tas1))
   
  # quit("yes")
   
   tempstack1<-rast(tas1)
   precstack1<-rast(pres1)
   exter1<-c(-180,180,-90,90)
   ext(tempstack1)<-exter1
   ext(precstack1)<-exter1
   crs(tempstack1) <- "+proj=longlat +datum=WGS84"
   crs(precstack1) <- "+proj=longlat +datum=WGS84"


   plot(tempstack1)
    plot(precstack1)   
  #quit("yes")
   



#   tempstack1<-rast(tempfiles1)
  1. precstack1<-rast(precfiles1)


#   tempstack1<-rast(https://gis.stackexchange.com/questions/222291/extracting-mean-of-multiple-raster-layers-using-r"./origo2/bio1.nc")
#   precstack1<-rast("./origo2/bio12.nc")
   wb1<-watbalRaster(tempstack1, precstack1, CC = 400 , ncpu=4)
   terra::writeRaster(wb1, "wb1.tif", overwrite=TRUE)
   terra::writeCDF(wb1, "wb1.nc", overwrite=TRUE)


  bb1 <- biobalRaster(wb1, CC = 400, path=NULL, ncpu=4)
   terra::writeRaster(bb1, "bb1.tif", overwrite=TRUE)
   terra::writeCDF(bb1, "bb1.nc", overwrite=TRUE)
 bi1<-biointRaster(bb1)

  terra::writeRaster(bi1, "bi1.tif", overwrite=TRUE )
  terra::writeCDF(bi1, "bi1.nc", overwrite=TRUE )


 #  ithRaster(bh1)
  1. bt1 <− biotypeRaster( temp=tempstack1, prec=precstack1, path="./origo4/", CC = 400 , bh=bh1, ncpu=4)
  1. terra::writeRaster(bt1, "bt1.tif", overwrite=TRUE)
#   terra::writeCDF(bt1, "bt1.nc", overwrite=TRUE )



  1. plot(wb1)
 #  plot(bt1)
 #  plot(bb1)
# plot(bi1)

}



view_bioclimate<-function() {

  1. wb1<-stack("wb1.nc")
 wb1<-raster::stack("wb1.nc")

print("View ")

m=0 n=1 idx=m*12+n

  1. plot(wb1idx)


m=3 n=1 idx=m*12+n

  1. plot(wb1idx)


m=8 n=1 idx=m*12+n

  1. plot(wb1idx)


m=9 n=1 idx=m*12+n

  1. plot(wb1idx)


  1. plot(wb11)
  1. quit(-1)

means1=stack() sums1=stack()


for ( m in 0:11)

   {
   print("V")
   n=0
   idx=m*12
   s1=stack()    
   for ( n in 1:12)
   {
  # print("n")
    idx=m*12+n
  # print("j")
    r1=wb1idx
   #print("k")
    s1=stack(s1,r1)   
   }
   #print("hup")
   rus0=s11*0
   for ( n in 1:12)
   {
   rus0=rus0+s1n
 
   }


  rus1 <- rus0/12
   sums1<-stack(sums1, rus0)
   means1<-stack(means1, rus1)   


    # plot(rus1)
       
   }

names1<-c('Tmp','Pcp','PET','P_PET','ppa','ST','i_ST','ETR','Dh','S','r','rP')

names(sums1)<-names1 names(means1)<-names1

plot(sums1) plot(means1)

ext1<-extent(-180,180,-90,90)

crs1<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"



  1. str(sums1)


writeRaster(sums1, "wb_sums.nc", overwrite=TRUE, format="CDF")

writeRaster(means1, "wb_means.nc", overwrite=TRUE, format="CDF")


}




analyze_bioclimate<- function (indname1, lon1, lat1) {

   nc1<-nc_open(indname1)
   lons1<-ncvar_get(nc1,'lon')
   lats1<-ncvar_get(nc1,'lat')
   tas1<-ncvar_get(nc1,'tas')
   pr1<-ncvar_get(nc1,'pr')
   lac1<-lats1[lats1>(lat1-3)]
   lac2<-lac1[lats1<(lat1+3)]
   abslat1=lac2[1]
   latdex1<-which(lats1==abslat1)
   loc1<-lons1[lons1>(lon1-3)]
   loc2<-loc1[lons1<(lon1+3)]
   abslon1=loc2[1]
   londex1<-which(lons1==abslon1)


   lat1<-abslat1
   temps1<-tas1[londex1, latdex1,]-273.15
   pres1<-pr1[londex1, latdex1,]*3600*24*30.5*1000
   months1<-1:12




   meantemp1<-mean(temps1)
   sumpr1<-sum(pres1)
   print(temps1)
   print(pres1)
   print("Tann")
   print(meantemp1)
   print("Prann")
   print(sumpr1)
   #plot(months1, temps1)
   #plot(months1, pres1)
   wb1<-watbal(t =temps1,p =pres1,lat = lat1,CC = 400)
   bb1<-biobal(wb1, 400)
   bi1<-bioint(bb1)
   biotype1<-biotype(bb=bb1,  mode = 'TBR')
   #biotype2<-biotype(bb=bb1,  mode = 'zonel')


   ith1<-ith(wb1)
   pet1<-thornthwaite(temps1, lat1, na.rm = FALSE)
   thermind1<-thermind(temps1)
   postemp1<-postemp(temps1)
   print(wb1)
   #print(bb1)
   #print(bi1)
   print(biotype1)
   #print(biotype2)
   #print(ith1)
   #print(pet1)
   #print(thermind1)
   #print(postemp1)
   #print(as.vector(pet1))
   pets1=as.vector(pet1)
   petsum1=sum(pets1)
   ptopet1=(sumpr1*100)/petsum1
  # return(c(meantemp1, sumpr1,petsum1, ptopet1))
   climate1<-data.frame(temps1, pres1)
   names(climate1)<-c("T", "P")
   return(climate1)

}


    1. main program

indname1<-"./simut1/pt_250_co2_450_mvelp_282.nc"




  1. bioclimater1(indname1)
  2. view_bioclimate()


  1. quit("yes")


lon1=0

  1. lat1=-60

lat1=-30

indname1<-"./simut1/pt_250_co2_450_mvelp_282.nc"

met1<-meteor1(indname1, lon1, lat1)

indname2<-"./simut1/pt_250_co2_3000_mvelp_282.nc"

met2<-meteor1(indname2, lon1, lat1)

  1. quit("yes")


df1<-analyze_bioclimate(indname1, lon1, lat1)


indname2<-"./simut1/pt_250_co2_3000_mvelp_282.nc"


df2<-analyze_bioclimate(indname2, lon1, lat1)

print(df1) print(df2)

months1<-1:12 T1<-df1$T T2<-df2$T P1<-df1$P P2<-df2$P

print (length(T1)) print (length(T2))

print(months1) print(T1)

  1. plot(months1, T1)


df=data.frame(months1, T1,P1, T2,P2)


names(df)<-c("month", "T1", "P1", "T2", "P2")


write.csv(df, "comparison.csv", row.names=FALSE)


  1. p <- ggplot(df, aes(x=month, y=T1))
  1. p + geom_line(linetype = 2)
  1. +labs(title="P/T temperature if CO2 5000 ppmv",x ="Month", y = "T deg C")
  2. subtitle='Location (+90,-60) ',








Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:43, 7 December 2023Thumbnail for version as of 14:43, 7 December 2023698 × 636 (1.7 MB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata