File:Paritition of dynamic plane of quadratic polynomial for 1 4.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (SVG file, nominally 1,000 × 1,000 pixels, file size: 430 KB)

Captions

Captions

Paritition of dynamic plane of quadratic polynomial for 1/9

Summary

[edit]
Description
English: Paritition of dynamic plane of critically preperiodic quadratic polynomial for external ray t = 1/4 landing at the critical value z= c = -0.228155493653962 +1.115142508039937*i period = 0. Preperiod = 2 period = 1
Date
Source Own work
Author Adam majewski
Other versions
SVG development
InfoField
 
The SVG code is valid.
 
This chart was created with Gnuplot.
 
 This plot uses embedded text that can be easily translated using a text editor.

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.


Maxima CAS src code

[edit]
 /*  
batch file for Maxima CAS

maxima
batch("k.mac");

------------ program Mandel by Wolf Jung -------------------------
The angle  3/30  or  0p0011
has  preperiod = 1  and  period = 4.
The corresponding parameter ray is landing
at a Misiurewicz point of preperiod 1 and
period dividing 4.
Do you want to draw the ray and to shift c
to the landing point?
-------------------



 */ 



kill(all);
remvalue(all);
ratprint:false; /*  It doesn't change the computing, just the warnings. */
display2d:false;





 /* --------------------------definitions of functions ------------------------------*/
 f(z,c):=z*z+c; /* Complex quadratic map */
 finverseplus(z,c):=float(rectform(sqrt(z-c)))$
 finverseminus(z,c):=float(rectform(-sqrt(z-c)))$ 

/* */
fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c)$

/*Standard polynomial F_p \, which roots are periodic z-points of period p and its divisors */
F(p, z, c) := fn(p, z, c) - z $

/* Function for computing reduced polynomial G_p\, which roots are periodic z-points of period p without its divisors*/
G[p,z,c]:=
block(
[f:divisors(p),
t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */
f:delete(p,f), /* delete p from list of divisors */
if p=1
then return(F(p,z,c)),
for i in f do 
 t:t*G[i,z,c],
g: F(p,z,c)/t,
return(ratsimp(g))
)$

GiveRoots(g):=
 block(
 [cc],
 cc:bfallroots(expand(%i*g)=0),
 cc:map(rhs,cc),/* remove string "c=" */
 cc:map('float,cc),
 return(cc)
  )$ 






 /* Gives points of backward orbit of z=repellor  
 
   problem for 1/10 
      */
 GiveBackwardOrbit(c,repellor,zxMin,zxMax,zyMin,zyMax,iXmax,iYmax,  hit_limit):=
  block(
   hit_limit:10, /* proportional to number of details and time of drawing */
   PixelWidth:(zxMax-zxMin)/iXmax,
   PixelHeight:(zyMax-zyMin)/iYmax,
   /* 2D array of hits pixels . Hit > 0 means that point was in orbit */
   array(Hits,fixnum,iXmax,iYmax), /* no hits for beginning */
  /* choose repeller z=repellor as a starting point */
  stack:[repellor], /*save repellor in stack */
  /* save first point to list of pixels  */ 
  x_y:[repellor], 
 /* reversed iteration of repellor */
  loop,
  /* pop = take one point from the stack */
  z:last(stack),
  stack:delete(z,stack),
  /*inverse iteration - first preimage (root) */
  z:finverseplus(z,c),
  /* translate from world to screen coordinate */
  iX:fix((realpart(z)-zxMin)/PixelWidth),
  iY:fix((imagpart(z)-zyMin)/PixelHeight),
  hit:Hits[iX,iY],
  if hit<hit_limit   
   then 
    (
    Hits[iX,iY]:hit+1,
    stack:endcons(z,stack), /* push = add z at the end of list stack */
    if hit=0 then x_y:endcons( z,x_y)
    ),
  /*inverse iteration - second preimage (root) */
  z:-z,
 /* translate from world to screen coordinate, coversion to integer */
  iX:fix((realpart(z)-zxMin)/PixelWidth),
  iY:fix((imagpart(z)-zyMin)/PixelHeight),
  hit:Hits[iX,iY],
  if hit<hit_limit   
   then 
    (
     Hits[iX,iY]:hit+1,
     stack:endcons(z,stack), /* push = add z at the end of list stack to continue iteration */
     if hit=0 then x_y:endcons( z,x_y)
    ),
   if is(not emptyp(stack)) then go(loop), 
 return(x_y) /* list of pixels in the form [z1,z2] */
 )$

 
 
 /*-----------------------------------*/ 
 Psi_n(r,t,z_last, Max_R):=
 /*   */
 block(
  [iMax:200,
  iMax2:0],
  /* -----  forward iteration of 2 points : z_last and w --------------*/
  array(forward,iMax-1), /* forward orbit of z_last for comparison */
  forward[0]:z_last,
  i:0,
  while cabs(forward[i])<Max_R  and  i< ( iMax-2) do
  (     
  /* forward iteration of z in fc plane & save it to forward array */
  forward[i+1]:forward[i]*forward[i] + c, /* z*z+c */
  /* forward iteration of w in f0 plane :  w(n+1):=wn^2 */
  r:r*2, /* square radius = R^2=2^(2*r) because R=2^r */
  t:mod(2*t,1),
  /* */
  iMax2:iMax2+1,
  i:i+1
  ),
  /* compute last w point ; it is equal to z-point */
  R:2^r,
  /* w:R*exp(2*%pi*%i*t),       z:w, */
  array(backward,iMax-1),
  backward[iMax2]:float(rectform(ev(R*exp(2*%pi*%i*t)))), /* use last w as a starting point for backward iteration to new z */
  /* -----  backward iteration point  z=w in fc plane --------------*/
  for i:iMax2 step -1 thru 1 do
  (
  temp:float(rectform(sqrt(backward[i]-c))), /* sqrt(z-c) */
  scalar_product:realpart(temp)*realpart(forward[i-1])+imagpart(temp)*imagpart(forward[i-1]),
  if (0>scalar_product) then temp:-temp, /* choose preimage */
  backward[i-1]:temp
  ),
  return(backward[0])
 )$
 
 
 
 
 
 /* problems for c= -2 and t = 1/2 */
 GiveRay(t,c):=
 block(
  [r],
  /* range for drawing  R=2^r ; as r tends to 0 R tends to 1 */
  rMin:1E-10, /* 1E-4;  rMin > 0  ; if rMin=0 then program has infinity loop !!!!! */
  rMax:3, 
  dz : 100, /*  dz : cabs ( z - last_z)  ; if dz is to small then loop is not ending   */
  MachineEpsilonDouble: 1E-16,
  
  caution:0.9330329915368074, /* r:r*caution ; it gives smaller r */
  /* upper limit for iteration */
  R_max:300,
  /* */
  zz:[], /* array for z points of ray in fc plane */
  /*  some w-points of external ray in f0 plane  */
  r:rMax,
  while 2^r<R_max do r:2*r, /* find point w on ray near infinity (R>=R_max) in f0 plane */
  R:2^r,
  w:float(rectform(ev(R*exp(2*%pi*%i*t)))),
  z:w, /* near infinity z=w */
  zz:cons(z,zz),
  unless (r<rMin  or dz < MachineEpsilonDouble) do
  (     /* new smaller R */
  	r:r*caution,  
  	R:2^r,
  	/* */
  	w:float(rectform(ev(R*exp(2*%pi*%i*t)))),
  	/* */
  	last_z:z,
  	z:Psi_n(r,t,last_z,R_max), /* z=Psi_n(w) */
  	dz : cabs ( z - last_z),
  	zz:cons(z,zz)
  ),
  return(zz)
 )$





  


/* 
converts complex number z = x*y*%i 
to the list in a draw format:  
[x,y] 
*/
d(z):=[float(realpart(z)), float(imagpart(z))]$

ToPoints(myList):= points(map(d,myList))$


/* give Draw List from one point*/
ToPoint(z):=points([d(z)])$






 /*  compile(all)$  */

 /* ----------------------- main ----------------------------------------------------*/


start:elapsed_run_time ();
  
 HitLimit:15$ /* proportional to number of details and time of drawing */
 /* external angle in turns */
 /* resolution is proportional to number of details and time of drawing */
 iX_max:1000$
 iY_max:1000$
 /* define z-plane ( dynamical ) */
 ZxMin:-2.0$
 ZxMax:2.0$
 ZyMin:-2.0$
 ZyMax:2.0$




 t:1/4;
 /* give c a value */
 c: -0.228155493653962  +1.115142508039937*%i $ /*  one can compute it from t  */


 /* compute fixed points */
 Beta:float(rectform((1+sqrt(1-4*c))/2)); /* compute repelling fixed point beta */
 alfa:float(rectform((1-sqrt(1-4*c))/2)); /* other fixed point */


 /* compute backward orbit of repelling fixed point*/
 xy: GiveBackwardOrbit(c,Beta,ZxMin,ZxMax,ZyMin,ZyMax,iX_max,iY_max, HitLimit)$ 
 

  /* compute ray points & save to zz list  */  
 eRay : GiveRay(t,c)$
 
 eRayT:GiveRay(t/2,c)$
 eRayTp:GiveRay((t+1)/2,c)$
 



 /* time of computations */
 time:fix(elapsed_run_time ()-start);

 /* draw it using draw package by */
 
 
 
 load(draw)$ 

 path:"/"$ /*  if empty then file is in a home dir  */

 /* if graphic  file is empty (= 0 bytes) then run draw2d command again */
 
 draw2d(
  terminal  = 'svg,
  file_name = sconcat(path,"a",string(HitLimit)),
  user_preamble="set size square;set key top right",
  title= concat("Dynamical plane for fc(z)=z*z+",string(c)),
  dimensions = [iX_max, iY_max],
  yrange = [ZyMin,ZyMax],
  xrange = [ZxMin,ZyMax],
  xlabel     = "Z.re ",
  ylabel     = "Z.im",
  point_type = filled_circle,
  points_joined =true,
  point_size    =  0.2,
  color         = red,
    
   
  
  points_joined =false,
  color         = black,
  key = "backward orbit of z=beta",
  points(map(realpart,xy),map(imagpart,xy)),
  
  
  
  points_joined =false,
  color         = green,
  point_size    =  1.4,
  key = "critical value",
  ToPoint(c),
  
  
  key = sconcat("external ray t=",string(t)),
  color = green,
  points_joined =true,
  point_size    =  0.2,
  ToPoints(eRay),
  
  
 
  points_joined = false,
  color         = black,
  point_size    =  1.4,
  key = "critical point z = 0.0",
  ToPoint(0.0),

  points_joined =true,
  point_size    =  0.2,
  color         = red,
  key = sconcat("external ray t/2 = ", string(t/2)),
  ToPoints(eRayT),
  
  
  key =  sconcat("external ray (t+1)/2 =",string((t+1)/2)),
  color = magenta,
  ToPoints(eRayTp)
 
  
  
 )$


Text output

[edit]
(%i17) start:elapsed_run_time()
(%o17) 0.07
(%i18) HitLimit:15
(%i19) iX_max:1000
(%i20) iY_max:1000
(%i21) ZxMin:-2.0
(%i22) ZxMax:2.0
(%i23) ZyMin:-2.0
(%i24) ZyMax:2.0
(%i25) t:1/4
(%o25) 1/4
(%i26) c:(-0.228155493653962)+1.115142508039937*%i
(%i27) Beta:float(rectform((1+sqrt(1-4*c))/2))
(%o27) 1.41964337760708-0.6062907292071991*%i
(%i28) alfa:float(rectform((1-sqrt(1-4*c))/2))
(%o28) 0.6062907292071991*%i-0.4196433776070805

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:00, 14 July 2019Thumbnail for version as of 06:00, 14 July 20191,000 × 1,000 (430 KB)Soul windsurfer (talk | contribs)User created page with UploadWizard

File usage on other wikis

Metadata