File:Nested Ellipses.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,500 × 1,000 pixels, file size: 64 KB, MIME type: image/png)

Captions

Captions

Nested Ellipses

Summary

[edit]
Description
English: Nested Ellipses or spiral galaxy or Ellipse Whirl: "a sequence of concentric and similar ellipses, so that each ellipse lies inside the previous ellipse and is tangent to it"[1]. Parameters: a=5, b=4 theta=0.2617993877991494 r=0.9434598957108945 number of spirals=70. "The spiral itself is not not drawn: we see it as the locus of points where the circles are especially close to each other." [2]
Date
Source Own work
Author Adam majewski
Other versions
  • Nested Ellipses (Ellipse Whirl) by (C. J. Chen)[3]
  • tangential and concentric ellipse [4]
 
This plot was created with Gnuplot.
File:Nested Ellipses.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:Nested Ellipses.png → File:Nested Ellipses.svg

For more information, see Help:SVG.

In other languages
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
New SVG image

Algorithm=

[edit]

Ellipse centered at origin and not rotated

[edit]
NOtation

the equation of a ellipse:

  • centered at the origin
  • with width = 2a and height = 2b

the parametric equation is:

So explicit equations :

The parameter t :

  • is called the eccentric anomaly in astronomy
  • is not the angle of with the x-axis
  • can be called internal angle of the ellipse

ellipse rotated and not moved

[edit]

Rotation In two dimensions

[edit]
A counterclockwise rotation of a vector through angle Template:Mvar. The vector is initially aligned with the Template:Mvar-axis.

In two dimensions, the standard rotation matrix has the following form:

.

This rotates column vectors by means of the following matrix multiplication,

.

Thus, the new coordinates (x′, y′) of a point (x, y) after rotation are

.

result

[edit]

Center is in the origin ( not shifted or not moved) and rotated:

  • center is the origin z = (0, 0)
  • is the angle measured from x axis
  • The parameter t (called the eccentric anomaly in astronomy) is not the angle of with the x-axis
  • a,b are the semi-axis in the x and y directions




Here

  • is fixed ( constant value)
  • t is a parameter = independent variable used to parametrise the ellipse


So

intersection of 2 ellipses

[edit]

Intersection = common points


not scaled
[edit]

2 ellipses:

  • both are cetered at origin
  • first is not rotated, second is rotated (constant angle theta)
  • with the same the aspect ratio s (the ratio of the major axis to the minor axis)




Fix x, then find y:

scaled
[edit]

Second is scaled by factor r[5]



where:

  • is the tilt angle


Maxima CAS src code

[edit]
/*

kissing ellipses



These animations are constructed by shrinking and rotating a sequence of concentric and similar ellipses,
so that each ellipse lies inside the previous ellipse and is tangent to it.

https://benice-equation.blogspot.com/2019/01/nested-ellipses.html
==================================================
https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips

tangential concentric ellipse and insribed ellipses

Let’s say I have an ellipse with horizontal axis $a$ and vertical axis $b$, centered at $(0,0)$. 
I want to compute $a’$ and $b’$ of a smaller ellipse centered at $(0,0)$, 
with the axes rotated by some angle $t$, tangent to the bigger ellipse and $\frac{a’}{b’}=\frac{a}{b}$.




---------------------

The standard parametric equation is:

(x,y)->(a cos(t),b sin(t))


---------------------------

Rotation counterclockwise about the origin through an angle α carries 

(x, y) to (x cos α − ysin α, ycos α+x sin α) 

https://www.maa.org/external_archive/joma/Volume8/Kalman/General.html

=====================================
https://math.stackexchange.com/questions/2987044/how-to-find-the-equation-of-a-rotated-ellipse



===============================

https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips


============================================================
intersection of 2 ellipses

the common point of 2 ellipses are not vertices ( vertex)

https://math.stackexchange.com/questions/1688449/intersection-of-two-ellipses
https://math.stackexchange.com/questions/425366/finding-intersection-of-an-ellipse-with-another-ellipse-when-both-are-rotated/425412#425412

https://math.stackexchange.com/questions/3312747/intersection-area-of-concentric-ellipses
https://math.stackexchange.com/questions/426150/what-is-the-general-equation-of-the-ellipse-that-is-not-in-the-origin-and-rotate/434482#434482
------
xc <- 1 # center x_c or h
yc <- 2 # y_c or k
a <- 5 # major axis length
b <- 2 # minor axis length
phi <- pi/3 # angle of major axis with x axis phi or tau

t <- seq(0, 2*pi, 0.01) 
x <- xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
y <- yc + a*cos(t)*cos(phi) + b*sin(t)*cos(phi)
plot(x,y,pch=19, col='blue')
https://stackoverflow.com/questions/41820683/how-to-plot-ellipse-given-a-general-equation-in-r

===============
Batch file for Maxima CAS
save as a e.mac
run maxima : 
 maxima
and then : 
batch("e.mac");




*/


kill(all);
remvalue(all);
ratprint:false;
numer:true$
display2d:false$


/* 
converts complex number z = x*y*%i 
to the list in a draw format:  
[x,y] 
*/
d(z):=[float(realpart(z)), float(imagpart(z))]$

/* give Draw List from one point*/
dl(z):=points([d(z)])$




/* trigonometric functions in Maxima CAS use radians */
deg2rad(t):= float(t*2*%pi/360)$

GiveImplicit(a,b):=implicit( x^2/(a^2) + (y^2)/(b^2) = 1, x, -4,4, y, -4,4)$

GivePointOfEllipse(a,b, t):= a*cos(t) + b*sin(t)*%i$


/*

xc <- 1 # center x_c or h
yc <- 2 # y_c or k
a <- 5 # major axis length
b <- 2 # minor axis length
phi <- pi/3 # angle of major axis with x axis phi or tau

t <- seq(0, 2*pi, 0.01) 
x <- xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi)
y <- yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi)

<math>\mathbf{x} =\mathbf{x}_{\theta}(t) = a\cos\ t\cos\theta - b\sin\ t\sin\theta</math>

<math>\mathbf{y} =\mathbf{y}_{\theta}(t) = a\cos\ t\cos\theta + b\sin\ t\cos\theta</math>


https://stackoverflow.com/questions/65278354/how-to-draw-rotated-ellipse-in-maxima-cas/65294520#65294520
*/

GiveRotatedEllipse(a,b,theta, NumberOfPoints):=block(
	[x, y, zz, t , tmin, tmax, dt, c, s],
	zz:[],
	dt : 1/NumberOfPoints, 
 	tmin: 0, 
 	tmax: 2*%pi,
 	c:float(cos(theta)),
 	s:float(sin(theta)),
 	for t:tmin thru tmax step dt do(
 		x: a*cos(t)*c - b*sin(t)*s,
 		x: float(x), 
 		y: a*cos(t)*s + b*sin(t)*c,
 		y:float(y),
 		zz: cons([x,y],zz)
 	),
 	return (points(zz))
)$

GiveScaledRotatedEllipse(a,b, r,theta, NumberOfPoints):= GiveRotatedEllipse(r*a,r*b,theta, NumberOfPoints)$

GiveEllipseN(a,b,r,n,theta, NumberOfPoints):=GiveRotatedEllipse(a*(r^n),b*(r^n),n*theta, NumberOfPoints)$

Give_N(n):= GiveEllipseN(a,b,r,n,theta, NumberOfPoints)$

GiveEllipses(n):=block(
	[elipses],
	
	ellipses:makelist(i, i, 0, n, 1),
	ellipses:map(Give_N, ellipses),
	return(ellipses)
	


)$

/* 
scale ratio r = a'/a = b'/b

https://math.stackexchange.com/questions/3773593/given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips
*/
GiveScaleRatio(a, b, theta):= block(
	[d, r], 
	d: (a/b - b/a)*sin(theta), 
	d:float(d),
	r: sqrt(1+d*d/4) - d/2,
	r:float(r),
	return(r)


)$


compile(all)$

/* compute */

/* angles fo trigonometric functions in radians */
angle: 15$
theta:deg2rad(angle) $  /* theta is the angle between    */
a: 5$
b: 4$
NumberOfPoints : 700$
r:GiveScaleRatio(a, b, theta)$  /* 0.942$ the (axis) scaled ratio r = a'/a = b'/b */


n:70;



ee:GiveEllipses(n)$



path:"~/Dokumenty/ellipse/scaled/s1/"$ /*  pwd, if empty then file is in a home dir , path should end with "/" */

/* draw it using draw package by */

 load(draw); 
/* if graphic  file is empty (= 0 bytes) then run draw2d command again */

 draw2d(
  user_preamble="set key top right; unset mouse",
  terminal  = 'png,
  file_name = sconcat(path, string(a),"_",string(b), "_",string(theta), "_",string(r),"_", string(n)),
   title = "",  
  dimensions = [1500, 1000],
   axis_top         = false,
  axis_right       = false,
  axis_bottom         = false,
  axis_left       = false,
 ytics  = 'none,
 xtics  = 'none,
  proportional_axes = xy,
  line_width = 1,
  line_type = solid,
  
  fill_color = white,
  point_type=filled_circle,
  points_joined = true,
  point_size = 0.05,
  
    
  key = "",
  color = red,
  ee 
  )$
  

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

references

[edit]
  1. Nested Ellipses (Ellipse Whirl) by benice (C. J. Chen)
  2. Osculating curves: around the Tait-Kneser Theoremby E. Ghys, S. Tabachnikov, V. Timorin
  3. Nested Ellipses (Ellipse Whirl) by benice (C. J. Chen)
  4. math.stackexchange question: given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips
  5. math.stackexchange question : given-ellipse-of-axes-a-and-b-find-axes-of-tangential-and-concentric-ellips

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:18, 15 December 2020Thumbnail for version as of 16:18, 15 December 20201,500 × 1,000 (64 KB)Soul windsurfer (talk | contribs)Uploaded own work with UploadWizard

The following page uses this file:

Metadata