File:Neptune (1995-09-270).jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Neptune_(1995-09-270).jpg (800 × 450 pixels, file size: 36 KB, MIME type: image/jpeg)

Captions

Captions

Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune.

Summary

[edit]
Description
English: Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere. Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours. When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved across the planet's disk, revealing wind speeds as large as 325 meters per second (730 miles per hour). The largest of the giant, dark storm systems, called the "Great Dark Spot", received special attention because it resembled Jupiter's Great Red Spot, a storm that has persisted for more than three centuries. The lifetime of Neptune's Great Dark Spot could not be determined from the Voyager data alone, however, because the encounter was too brief. Its evolution was impossible to monitor with ground-based telescopes, because it could not be resolved on Neptune's tiny disk, and its contribution to the disk-integrated brightness of Neptune confused by the presence of a rapidly-varying bright cloud feature, called the "Bright Companion" that usually accompanied the Great Dark spot. The repaired Hubble Space Telescope provides new opportunities to monitor these and other phenomena in the atmosphere of the most distant planet. Images taken with WFPC-2's Planetary Camera (PC) can resolve Neptune's disk as well as most ground-based telescopes can resolve the disk of Jupiter. The spatial resolution of the HST WFPC-2 images is not as high as that obtained by the Voyager-2 Narrow-Angle Camera during that spacecraft's closest approach to Neptune, but they have a number of other assets that enhance their scientific value, including improved ultra-violet and infrared sensitivity, better signal-to-noise, and, and greater photometric accuracy. The images of Neptune acquired by the WFPC-2 Science team in late June clearly demonstrate these capabilities. The side of the planet facing the Earth at the start of the program (11:36 Universal Time on July 27) was imaged in color filters spanning the ultraviolet (255 and 300-nm), visible (467, 588, 620, and 673- nm), and near-infrared (890-nm) parts of the spectrum. The planet then rotated 180 degrees in longitude, and the opposite hemisphere was imaged in a subset of these colors (300, 467, 588, 620, and 673-nm). The HST/WFPC-2 program more recently conducted by Hammel and Lockwood provides better longitude coverage, and a wider range of observing times, but uses a more restricted set of colors. The ultraviolet pictures show an almost featureless disk that is slightly darker near the edge. The observed contrast increases in the blue, green, red, and near-infrared images, which reveal many of the features seen by Voyager 2, including the dark band near 60 S latitude and several distinct bright cloud features. The bright cloud features are most obvious in the red and infrared parts of the spectrum where methane gas absorbs most strongly (619 and 890 nm). These bright clouds thought to be high above the main cloud deck, and above much of the absorbing methane gas. The edge of the planet's disk also appears somewhat bright in these colors, indicating the presence of a ubiquitous, high-altitude haze layer. The northern hemisphere is occupied by a single prominent cloud band centered near 30 N latitude. This planet-encircling feature may be the same bright cloud discovered last fall by ground-based observers. Northern hemisphere clouds were much less obvious at the time of the Voyager-2 encounter. The tropics are about 20 % darker than the disk average in the 890-nm images, and one of these images reveals a discrete bright cloud on the equator, near the edge of the disk. The southern hemisphere includes two broken bright bands. The largest and brightest is centered at 30 S latitude, and extends for least 40 degrees of longitude, like the Bright Companion to the Great Dark Spot. There is also a thin cloud band at 45 S latitude, which almost encircles the planet. One feature that is conspicuous by its absence is the storm system known as the Great Dark Spot. The second smaller dark spot, DS2, that was seen during the Voyager-2 encounter was also missing. The absence of these dark spots was one of the biggest surprises of this program. The WFPC-2 Science team initially assumed that the two storm systems might be near the edge of the planet's disk, where they would not be particularly obvious. An analysis of their longitude coverage revealed that less than 20 degrees of longitude had been missed in the colors where these spots had their greatest contrast (467 and 588 nm). The Great Dark Spot covered almost 40 degrees of longitude at the time of the Voyager-2 fly-by. Even if it were on the edge of the disk, it would appear as a "bite" out of the limb. Because no such feature was detected, we concluded that these features had vanished. This conclusion was reinforced by the more recent observations by Hammel and Lockwood, which also show no evidence of discrete dark spots. These dramatic changes in the large-scale storm systems and planet-encircling clouds bands on Neptune are not yet completely understood, but they emphasize the dynamic nature of this planet's atmosphere, and the need for further monitoring. Additional HST WFPC-2 observations are planned for next summer. These two teams are continuing their analysis of these data sets to place improved constraints on these and other phenomena in Neptune's atmosphere. Figure Captions: These almost true-color pictures of Neptune were constructed from HST/WFPC2 images taken in blue (467-nm), green (588-nm), and red (673-nm) spectral filters. There is a bright cloud feature at the south pole, near the bottom right of the image. Bright cloud bands can be seen at 30S and 60S latitude. The northern hemisphere also includes a bright cloud band centered near 30N latitude. The second picture was compiled from images taken after the planet had rotated about 180 degrees of longitude (about 9 hours later) to show the opposite hemisphere.
Date 14 June 1995 (upload date)
Source Neptune
Author
Other versions
Keywords
InfoField
Neptune; Planets; Solar System

Licensing

[edit]
Public domain
This file is in the public domain because it was created by NASA and ESA. NASA Hubble material (and ESA Hubble material prior to 2009) is copyright-free and may be freely used as in the public domain without fee, on the condition that only NASA, STScI, and/or ESA is credited as the source of the material. This license does not apply if ESA material created after 2008 or source material from other organizations is in use.

The material was created for NASA by Space Telescope Science Institute under Contract NAS5-26555, or for ESA by the Hubble European Space Agency Information Centre. Copyright statement at hubblesite.org or 2008 copyright statement at spacetelescope.org.

For material created by the European Space Agency on the spacetelescope.org site since 2009, use the {{ESA-Hubble}} tag.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:10, 20 April 2024Thumbnail for version as of 12:10, 20 April 2024800 × 450 (36 KB)OptimusPrimeBot (talk | contribs)#Spacemedia - Upload of https://stsci-opo.org/STScI-01EVTAW61XZCF0MN4YK909SR9T.jpg via Commons:Spacemedia

Metadata