File:Interior of the Cauliflower Julia set.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 410 KB, MIME type: image/png)
File information
Structured data
Captions
Summary
[edit]DescriptionInterior of the Cauliflower Julia set.png |
English: interior of the Cauliflower Julia set. Insired by the images by T Kawahira. The black structure around fixed point and it's preimages is a numerical error ( glitch) |
Date | |
Source | Own work |
Author | Adam majewski |
Other versions |
|
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
c src code
[edit]/*
c console program
https://commons.wikimedia.org/wiki/File:Quadratic_Julia_set_with_Internal_tile_for_internal_ray_0.ogv
-----------------------------------------
1.ppm file code is based on the code of Claudio Rocchini
http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
create 24 bit color graphic file , portable pixmap file = PPM
see http://en.wikipedia.org/wiki/Portable_pixmap
to see the file use external application ( graphic viewer)
I think that creating graphic can't be simpler
---------------------------
2. first it creates data array which is used to store rgb color values of pixels,
fills tha array with data and after that writes the data from array to pgm file.
It alows free ( non sequential) access to "pixels"
-------------------------------------------
Adam Majewski fraktal.republika.pl
Sobel filter
Gh = sum of six values ( 3 values of matrix are equal to 0 ). Each value is = pixel_color * filter_coefficients
gcc i.c -lm -Wall -o2
gcc i.c -lm -Wall -march=native
time ./a.out
*/
# include <stdio.h>
# include <stdlib.h>
# include <math.h>
# include <complex.h>
# include <string.h>
/* iXmax/iYmax = 1 */
unsigned int iXmax = 20000; /* height of image in pixels */
unsigned int iYmax = 20000;
unsigned int iLength;
/* fc(z) = z*z + c */
# define denominator 1 /* denominator of internal angle */
double AR = 0.0014998955; /* PixelWidth*1.5 radius of circle around attractor ZA = target set for attracting points */
//#define alfa (1-sqrt(1-4*Cx))/2 /* attracting or parabolic fixed point z = alfa */
//#define beta (1+sqrt(1-4*Cx))/2 /* repelling or parabolic fixed point z = beta */
/* color */
unsigned char color;
// Arrays are 0-indexed, so the first array element is at index = 0, and the highest is =(size_of_array – 1)
unsigned char colorArray[2][2]={{255,231},
{123,99}}; /* shades of gray used in image */
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
/* escape time to infinity */
int GiveExtLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _ER2)
{
int i;
double Zx, Zy;
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
Zx=_Zx0; /* initial value of orbit */
Zy=_Zy0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (i=0;i<iMax && ((Zx2+Zy2)<_ER2);i++)
{
Zy=2*Zx*Zy + C_y;
Zx=Zx2-Zy2 +C_x;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
};
return i;
}
/* find attractor ZA using forward iteration of critical point Z = 0 */
/* if period is >1 gives one point from attracting cycle */
double complex GiveAttractor(double _Cx, double _Cy, double ER2, int _IterationMax)
{
int Iteration;
double Zx, Zy; /* z = zx+zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
/* -- find attractor ZA using forward iteration of critical point Z = 0 */
Zx=0.0;
Zy=0.0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (Iteration=0;Iteration<_IterationMax && ((Zx2+Zy2)<ER2);Iteration++)
{
Zy=2*Zx*Zy + _Cy;
Zx=Zx2-Zy2 + _Cx;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
};
return Zx+Zy*I;
}
// color is related to 2 measures : iLastIteration and part of internal tile
unsigned char GiveIntColor(double Zx0, double Zy0, double Cx, double Cy, int iMax, double AR2, double ZAx, double ZAy, unsigned char colorArray[2][2])
{ int i, m, n;
double Zx, Zy; /* z = zx+zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
double d, dX, dY; /* distance from z to Alpha */
Zx= Zx0; /* initial value of orbit */
Zy= Zy0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
dX=Zx- ZAx;
dY=Zy- ZAy;
d=dX*dX+dY*dY;
for (i=0;i<iMax && (d> AR2);i++)
{
Zy=2*Zx*Zy + Cy;
Zx=Zx2-Zy2 +Cx;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
dX=Zx- ZAx;
dY=Zy- ZAy;
d=dX*dX+dY*dY;
}
m = (Zy > 0 ? 0 : 1); // petal part
n = (i % 2); // attraction time
return colorArray[m][n]; //iColor
}
/* gives position of point (iX,iY) in 1D array ; uses also global variables */
unsigned int f(unsigned int _iX, unsigned int _iY)
{return (_iX + (iYmax-_iY-1)*iXmax );}
// save data array to pgm file
int SavePGMFile(int iWidth, unsigned char data[])
{
FILE * fp;
char name [15]; /* name of file */
sprintf(name,"%d", iWidth); /* basename = file name without extension*/
char *filename =strcat(name,".pgm");
char *comment="# ";/* comment should start with # */
/* save image to the pgm file */
fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode */
fprintf(fp,"P5\n %s\n %u %u\n %u\n",comment,iXmax,iYmax,MaxColorComponentValue); /*write header to the file*/
fwrite(data,iLength,1,fp); /*write image data bytes to the file in one step */
printf("File %s saved. \n", filename);
fclose(fp);
return 0;
}
/* --------------------------------------------------------------------------------------------------------- */
int main(){
unsigned int nMax ; /* number of steps = number of images */
unsigned int n;
//double CxMin = 0.0837;
//double CxMax = 0.0839; /* C = Cx + Cy*i */
double carray[]={
0.0, 0.01, 0.02, 0.03, 0.035, 0.03722, 0.04, 0.045, 0.05, 0.06, 0.07, 0.077, 0.08378, 0.09, 0.10,
0.11, 0.12214, 0.13, 0.14, 0.150656, 0.155, 0.16, 0.165, 0.171528, 0.175, 0.18, 0.183, 0.186948, 0.19, 0.193, 0.197,
0.207388, 0.203, 0.206, 0.209, 0.2142728, 0.215, 0.2165, 0.2175, 0.21971144, 0.221, 0.222, 0.223, 0.22406680, 0.226,
0.228, 0.23050176, 0.232, 0.2335, 0.23492, 0.2353, 0.2356, 0.2366192000, 0.24, 0.245, 0.25};
nMax=sizeof(carray)/sizeof(double);
double Cx;
//double stepCx;
double Cy = 0.0;
// stepCx = (CxMax - CxMin)/ nMax;
unsigned int iX,iY, /* indices of 2D virtual array (image) = integer coordinate */
i; /* index of 1D array */
iLength = iXmax*iYmax;/* length of array in bytes = number of bytes = number of pixels of image * number of bytes of color */
/* world ( double) coordinate = dynamic plane = z-plane */
const double dSide = 1.3;
const double ZxMin=-dSide;
const double ZxMax=dSide;
const double ZyMin=-dSide;
const double ZyMax=dSide;
double PixelWidth=(ZxMax-ZxMin)/iXmax;
double PixelHeight=(ZyMax-ZyMin)/iYmax;
/* */
double Zx, Zy; /* Z=Zx+Zy*i */
// double alfa; // define alfa (1-sqrt(1-4*Cx))/2 /* attracting or parabolic fixed point z = alfa */
double complex ZA; /* atractor ZA = ZAx + ZAy*i */
double AR2 = AR*AR;
/* */
const double EscapeRadius=2.0; /* radius of circle around origin; its complement is a target set for escaping points */
double ER2=EscapeRadius*EscapeRadius;
const int IterationMax=60,
IterationMaxBig= 1000001;
int eLastIteration; // iLastIteration;
//int InternalTile;
/* sobel filter */
unsigned char G, Gh, Gv;
/* dynamic 1D arrays for colors ( shades of gray ) */
unsigned char *data, *edge;
data = malloc( iLength * sizeof(unsigned char) );
edge = malloc( iLength * sizeof(unsigned char) );
if (data == NULL || edge==NULL)
{
fprintf(stderr," Could not allocate memory");
getchar();
return 1;
}
//for(n=0;n<=nMax;++n)
// {
Cx = 0.25; //carray[n];
//alfa = (1-sqrt(1-4*Cx))/2 ; /* attracting or parabolic fixed point z = alfa */
ZA = GiveAttractor( Cx, Cy, ER2, IterationMaxBig); /* find attractor ZA using forward iteration of critical point Z = 0 */
// printf(" fill the data array \n");
for(iY=0;iY<iYmax;++iY){
Zy=ZyMin + iY*PixelHeight; /* */
if (fabs(Zy)<PixelHeight/2) Zy=0.0; /* */
//printf(" row %u from %u \n",iY, iYmax); /* info */
for(iX=0;iX<iXmax;++iX){
Zx=ZxMin + iX*PixelWidth;
eLastIteration = GiveExtLastIteration(Zx, Zy, Cx, Cy, IterationMax, ER2 );
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if ( IterationMax != eLastIteration )
color = 245; /* exterior */
/* interior */
else color = GiveIntColor(Zx, Zy, Cx, Cy, IterationMaxBig, AR2, creal(ZA), cimag(ZA), colorArray); /* */
data[i]=color;
//if (Zx>=0 && Zx <= 0.5 && (Zy > 0 ? Zy : -Zy) <= 0.5 - Zx) data[i]=255-data[i]; // show petal
/* if (Zx>0 && Zy>0) data[i]=255-data[i]; check the orientation of Z-plane by marking first quadrant */
}
}
// printf(" find boundaries in data array using Sobel filter\n");
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX){
Gv= data[f(iX-1,iY+1)] + 2*data[f(iX,iY+1)] + data[f(iX-1,iY+1)] - data[f(iX-1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX+1,iY-1)];
Gh= data[f(iX+1,iY+1)] + 2*data[f(iX+1,iY)] + data[f(iX-1,iY-1)] - data[f(iX+1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {edge[i]=255;} /* background */
else {edge[i]=0;} /* boundary */
}
}
//printf(" copy boundaries from edge to data array \n");
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX)
{i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if (edge[i]==0) data[i]=0;}}
/* ---------- file -------------------------------------*/
//printf(" save data array to the file \n");
SavePGMFile( iXmax, data);
// } // for n ....
/* --------------free memory ---------------------*/
free(data);
free(edge);
return 0;
}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 08:56, 1 January 2018 | 2,000 × 2,000 (410 KB) | Soul windsurfer (talk | contribs) | User created page with UploadWizard |
You cannot overwrite this file.
File usage on Commons
The following 7 pages use this file:
- File:Cauliflower Julia set DLD.png
- File:From decomposition to checkerboard.gif
- File:Interior of cauliflower with sepals.png
- File:Parabolic orbits insidse upper main chessboard box for f(z) = z^2 +0.25.svg
- File:Parabolic sepals for internal angle 1 over 1.png
- File:Preimages of the circle under map f(z) = z*z+0.25.svg
- File:Quadratic Julia set with Internal binary decomposition for internal ray 0.ogv
File usage on other wikis
The following other wikis use this file:
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
PNG file comment | |
---|---|
File change date and time | 18:18, 31 December 2017 |