File:Imploded cauliflower BD inverted.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (2,000 × 2,000 pixels, file size: 333 KB, MIME type: image/png)

Captions

Captions

Imploded cauliflower BD inverted

Summary

[edit]
Description
English: Imploded cauliflower. BD = Binary Decomposition. Inverted = inverted plane w = 1/z
Date
Source Own work
Author Adam majewski
Other versions


c source code

[edit]
/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  console program in c programing language 
===============================================================





  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt
  
  
  ./g.sh

  ----------------------
  
 real	0m19,809s
user	2m26,763s
sys	0m0,161s


  

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */




// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array





// see SetZPlane

double radius = 1.4; 
complex double center = 0.0;
double  DisplayAspectRatio  = 1.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)



// z plane = dynamic plane
double ZxMin ;	//-0.05;
double ZxMax ;	//0.75;
double ZyMin ;	//-0.1;
double ZyMax ;	//0.7;


double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
double ratio;





// w plane = 1/z plane
double WxMin = - 3;	//-0.05;
double WxMax = 3;	//0.75;
double WyMin = -3;	//-0.1;
double WyMax = 3;	//0.7;
double wPixelWidth;	// =(WxMax-WxMin)/ixMax;

double wPixelHeight;	// =(WyMax-WyMin)/iyMax;

// complex numbers of parametr plane 
double complex c;		// parameter of function fc(z)=z^2 + c




static unsigned long int iterMax = 1000000;	//iHeight*100;
unsigned long int iterMax_LSM = 255;


double ER = 200.0;		// EscapeRadius for bailout test 
double EscapeRadius=1000000; // = ER big !!!!
double ER_LSM ; // see GiveER_LSM  // 27.764 =  manually find value such that level curves of escape time cross critical point and it's  preimages
double ER_DLD ; // see GiveER_LSM  // 27.764 =  manually find value such that level curves of escape time cross critical point and it's  preimages


// SAC/J
double lnER; // ln(ER)
int i_skip = 2; // exclude (i_skip+1) elements from average
unsigned char s = 7; // stripe density

double BoundaryWidth = 3.0; // % of image width  
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;



//  ------------- DLD  ----------------------
const int N = 20;		// fixed number : maximal number of iterations
double p = 0.180; //0.01444322;		//
// DLD colors
//double me = 1.0;
double mi = 0.9;





/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;





/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}


// from screen to world coordinate ; linear mapping
// uses global cons
double GiveWx ( int ix)
{
  return (WxMin + ix * wPixelWidth);
}

// uses globaal cons
double GiveWy (int iy) {
  return (WyMax - iy * wPixelHeight);
}				// reverse y axis


complex double GiveW( int ix, int iy){
  double Wx = GiveWx(ix);
  double Wy = GiveWy(iy);
	
  return Wx + Wy*I;
	
	


}




int SetZPlane(complex double center, double radius, double a_ratio){

  ZxMin = creal(center) - radius*a_ratio;	
  ZxMax = creal(center) + radius*a_ratio;	//0.75;
  ZyMin = cimag(center) - radius;	// inv
  ZyMax = cimag(center) + radius;	//0.7;
  return 0;

}







// ****************** DYNAMICS = trap tests ( target sets) ****************************



// bailout test
// z escapes when 
// abs(z)> ER or cabs2(z)> ER2 
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time

int Escapes(complex double z){
 // here target set (trap) is the exterior  circle with radsius = ER ( EscapeRadius) 
  // with ceter = origin z= 0
  // on the Riemann sphere it is a circle with point at infinity as a center  
   
  if (cabs(z)>ER) return 1;
  return 0;
}








/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}

// =============================  tests ============================================


// Check Orientation of z-plane image : mark first quadrant of complex plane 
// it should be in the upper right position
// uses global var :  ...
int CheckZPlaneOrientation(unsigned char A[] )
{
 
	double Zx, Zy; //  Z= Zx+ZY*i;
	unsigned i; /* index of 1D array */
	unsigned int ix, iy;		// pixel coordinate 
	
	fprintf(stderr, "compute image CheckOrientation\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy, i, Zx, Zy) shared(A, ixMax , iyMax) 
	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix){
    			// from screen to world coordinate 
    			Zy = GiveZy(iy);
    			Zx = GiveZx(ix);
	  		i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
	  		if (Zx>0 && Zy>0) A[i]=255-A[i];   // check the orientation of Z-plane by marking first quadrant */
    		}
    	}
   
   
  	return 0;
}




int IsInsideWWindow(complex double w){

	if ( creal(w) < WxMax && creal(w) > WxMin &&
	     cimag(w) < WyMax && cimag(w) > WyMin) {return 1;}
	
	
	return 0;
	
		


}


/*

 Array A should have image of z-plane ( not w-plane) 
 compare of image of array A unchanged
 image of w window shows part of z window and outside of z-window
 
 "Note that the flower-shaped hole in the center is originally the edge boundary of the grid."
 http://xahlee.info/SpecialPlaneCurves_dir/Inversion_dir/inversion.html
 
 https://mathworld.wolfram.com/ConformalMapping.html
 http://home.iitk.ac.in/~saiwal/engineering/complex-mappings/
 
 
*/ 
int ShowWWindowOnZWindow(unsigned char A[] )
{
 
	complex double z;
	//double Zx, Zy; //  Z= Zx+ZY*i;
	complex double w;
	unsigned i; /* index of 1D array */
	unsigned int ix, iy;		// pixel coordinate 
	
	fprintf(stderr, "compute image ShowWWindowOnZWindow\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy, i, w, z) shared(A, ixMax , iyMax) 
	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix){
    			
    			z = GiveZ(ix,iy); // from screen to world coordinate 
    			w = 1/z; // invert complex plane z 
	  		if (IsInsideWWindow(w)){
	  			i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
	  			 A[i]=255-A[i];   // marking w window on z window
	  			 }
    		}
    	}
   
   
  	return 0;
}


// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ


  
  int nMax = iterMax;
  complex double dz = 1.0; //  is first derivative with respect to z.
  double distance;
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values 
    	if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
  			
    dz = 2.0*z * dz; 
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
  if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
  // else
  
  return iColorOfExterior;

 
}



// plots raster point (ix,iy) 
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDEMJ(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDEMJ (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image DEM\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDEMJ(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** only boundary by  DEM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfDEMJ_boundary(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ


  
  int nMax = iterMax;
  complex double dz = 1.0; //  is first derivative with respect to z.
  double distance;
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values 
    	if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
  			
    dz = 2.0*z * dz; 
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
  if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
  // else
  
  return iColorOfExterior;

 
}



// plots raster point (ix,iy) 
int DrawPointOfDEMJ_boundary (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDEMJ_boundary(z);
  if (iColor == iColorOfBoundary) 
  	{ A[i] = iColor ;} // draw only boundary without changing other parts 		
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDEMJ_boundary (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image DEM boundary\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDEMJ_boundary(A, ix, iy);	//  
  }

  return 0;
}











// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfUnknown(complex double z){



  
  int nMax = 20; // very low value
  
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 10000000000*ER )  return iColorOfExterior; // big values
    	if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
  			
    
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  //printf("found \n");
  return iColorOfUnknown;

 
}



// plots raster point (ix,iy) 
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfUnknown(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfUnknown (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image Unknown\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfUnknown(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfLSM(complex double z){

 int nMax = iterMax_LSM;
  double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER_LSM) break; // esacping
    	//if (cabsz< PixelWidth) break; // fails into finite attractor = interior, but not for disconnected Julia sets, then critical point and its preimages  !!!!
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  // manually udjusted series of ordered colors ( shades of gray )
  iColor = 255 - 230.0*((double) n)/18.0; // nMax or lower values in denominator
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image LSM\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM(A, ix, iy);	//  
  }

  return 0;
}


// ---------------------- LSM inv ============================


// plots raster point (ix,iy) 
int DrawPointOfLSM_inv (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double w;
  complex double z; // = 1/w


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  w = GiveW(ix,iy);
  z = 1/w;
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM_inv (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image LSM inverted\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM_inv(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBD(complex double z){

 int nMax = iterMax_LSM;
  double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER_LSM) break; // esacping
    	//if (cabsz< PixelWidth) break; // fails into finite attractor = interior but not for disconnected Julia sets, then critical point and its preimages  !!!!
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (cimag(z)>0.0) 
  	iColor = 255; 
  	else iColor = 0;
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image BD\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD(A, ix, iy);	//  
  }

  return 0;
}






// plots raster point (ix,iy) 
int DrawPointOfBD_inv (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z; // z = 1/w
  complex double w; // w = 1/z


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  w = GiveW(ix,iy);
  z = 1.0/w;
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// 
  
  return 0;
}






// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD_inv (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image BD inverted \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD_inv(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
 int nMax = 7;
  //double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	//cabsz = cabs(z);
    	//if (cabsz > ER) break; // esacping
    	//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  //if (cabs(z) > 2.0)
  	{ // exterior
  		if (creal(z)>0.0) 
  			iColor = 255; 
  			else iColor = 0;
  	}
  //	else iColor = iColorOfInterior;
  	
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfMBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image MBD\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfMBD(A, ix, iy);	//  
  }

  return 0;
}




// ***********************************************************************************************
//*************************************** SAC/J **************************************************
// *****************************************************************************************
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/stripeAC
// SAC = Stripe Average Coloring

//

// the addend function
// input : complex number z
// output : double number t 
double Give_t(double complex z){

  return 0.5+0.5*sin(s*carg(z));

}

/*
  input :
  - complex number
  - intege
  output = average
 
*/
double Give_Arg(double complex z , int iMax)
{
  int i=0; // iteration 
   
   
  //double complex Z= 0.0; // initial value for iteration Z0
  double A = 0.0; // A(n)
  double prevA = 0.0; // A(n-1)
  double R; // =radius = cabs(Z)
  double d; // smooth iteration count
  double complex dz = 1.0; // first derivative with respect to z
  double de; // Distance Estimation from DEM/J  
   
    
  // iteration = computing the orbit
  for(i=0;i<iMax;i++)
    { 
    
      dz = 2.0 * z * dz ; 
      z = z*z + c; // https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials
      
      if (i>i_skip) A += Give_t(z); // 
      
      R = cabs(z);
      // if(R > EscapeRadius) break; // exterior of M set
  	if (R > 1e60 || cabs(dz)> 1e60) break; // prevent NAN 	 	
      prevA = A; // save value for interpolation
        
    } // for(i=0
   
   
  if (i == iMax) 
    A = -1.0; // interior 
  else { // exterior
    de = 2 * R * log(R) / cabs(dz);
    if (de < distanceMax) A = FP_ZERO; //  boundary
    else {
      // computing interpolated average
      A /= (i - i_skip) ; // A(n)
      prevA /= (i - i_skip - 1) ; // A(n-1) 
      // smooth iteration count
      d = i + 1 + log(lnER/log(R))/M_LN2;
      d = d - (int)d; // only fractional part = interpolation coefficient
      // linear interpolation
      A = d*A + (1.0-d)*prevA;
     }   
  }
    
  return A;  
}
 
 
 
 
 
unsigned char ComputeColorOfSAC(complex double z){

  unsigned char iColor;
  double arg;
  
   
   
  	arg = Give_Arg( z, 2500); //   N in wiki 
	
   	// color is proportional to arg 
	if (arg < 0.0)
           
		iColor = 0;  // interior                        
    
		else //  
			{if (arg == FP_ZERO) 
     				iColor = 255; // boundary     
        			else iColor = (unsigned char) (255 - 255*arg );// exterior
      			}
      
    
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfSAC (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfSAC(z);
  A[i] = iColor ;		//   
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfSAC (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image SAC\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, "SAC/J :  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfSAC(A, ix, iy);	//  
  }

  return 0;
}

// -------------------------- SAC inv ============================================


// plots raster point (ix,iy) 
int DrawPointOfSAC_inv (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  
  complex double w;
  complex double z; // z = 1/w

  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  w = GiveW(ix,iy);
  z  = 1/w;
  iColor = ComputeColorOfSAC(z);
  A[i] = iColor ;		//   
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfSAC_inv (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	fprintf(stderr, "compute image SAC inv\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		fprintf (stderr, "SAC/J inv:  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfSAC_inv(A, ix, iy);	//  
  }

  return 0;
}







 

// ***************************************************************************************************************************
// ************************** DLD/J*****************************************
// ****************************************************************************************************************************



/* partial pnorm 
   input: z , zn = f(z), p
   output ppn
   
   
*/
double
ppnorm (complex double z, complex double zn, double p)
{

  double s[2][3];		// array for 2 points on the Riemann sphere
  int j;
  double d;			// denominator 
  double x;
  double y;

  double ds;
  double ppn = 0.0;

  // map from complex plane to riemann sphere
  // z
  x = creal (z);
  y = cimag (z);
  d = x * x + y * y + 1.0;

  s[0][0] = (2.0 * x) / d;
  s[0][1] = (2.0 * y) / d;
  s[0][2] = (d - 2.0) / d;	// (x^2 + y^2 - 1)/d

  // zn
  x = creal (zn);
  y = cimag (zn);
  d = x * x + y * y + 1.0;
  s[1][0] = (2.0 * x) / d;
  s[1][1] = (2.0 * y) / d;
  s[1][2] = (d - 2.0) / d;	// (x^2 + y^2 - 1)/d

  // sum 
  for (j = 0; j < 3; ++j)
    {
      ds = fabs (s[1][j] - s[0][j]);
      //  normal:  neither zero, subnormal, infinite, nor NaN
      //if (fpclassify (ds) !=FP_INFINITE)
      //if (isnormal(ds)) 
      // it is solved by if (cabs(z) > 1e60 ) break; procedure in parent function 
      ppn += pow (ds, p);	// |ds|^p
      //      else {ppn = 10000.0; printf("ds = infty\t");} // 

    }


  return ppn;







}

// DLD = Discret Lagrangian Descriptior
double
lagrangian (complex double z0, complex double c, int iMax, double p)
{

  int i;			// number of iteration
  double d = 0.0;		// DLD = sum
  double ppn;			// partial pnorm
  complex double z = z0;
  complex double zn;		// next z

  for (i = 0; i < iMax; ++i)
    {




      zn = z * z + c;		// complex iteration
      ppn = ppnorm (z, zn, p);
      d += ppn;			// sum
      //
      z = zn;

      //if (! isnormal(d)) { return 0.0; } // not works
      if (cabs (z) > ER_DLD ) //1e6)
	break;			// exterior : big values produces artifacts on the image  



    }





  //if (d<0.0) {// interior
  // d(z1a) - d(z21) = -0.0804163521959989        
  //      d = - d;
  //      d = (db - d) /dd ; // normalize, see test_interior
  //d = d*d;
  //if (d>1.0) {printf("d int > 1.0\n");
  ///     }
  //      else {

  d = d / ((double) i);		// averaging not summation
  //d = d*me;} // exterior

  return d;




}





unsigned char
ComputeColor_DLD (complex double z, int FatouType)
{


  //double cabsz;
  int iColor;
  double d;

  if (FatouType == 1)
    {				// interior
      d = lagrangian (z, c, N, p);
      // modify gradient position

      //{d = d - (int)d;} // only fractional part
      d = d * d * mi;
      //if ( d< 1.0 ) d = 0.0;

    }				//  
  else
    {
      d = lagrangian (z, c, 10 * N, p);
    }

  iColor = (int) (d * 255) % 255;	// nMax or lower walues in denominator



  return (unsigned char) iColor;


}



// plots raster point (ix,iy) 
int
DrawDLDPoint (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;
  int FatouType;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  iColor = A[i];		// read color = read the information about Fatou component type ( interior/exterior)
  if (iColor == iColorOfInterior)
    {
      FatouType = 1;
    }				// tru = interior
  else
    {
      FatouType = 0;
    }

  iColor = ComputeColor_DLD (z, FatouType);	// compute new color 
  A[i] = iColor;		// save new colr to the array         

  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawDLDImage (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  fprintf(stderr, "compute image DLD \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      //fprintf (stderr,"%d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawDLDPoint (A, ix, iy);	//  
    }

  return 0;
}



//=========================================

 
 
 
 
 
 
 
 
 
 
 
 
 
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int
SaveArray2PGMFile (unsigned char A[], double k, char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "%.0f", k );	/*  */
  char *filename = strcat (name, ".pgm");
  char long_comment[200];
  sprintf (long_comment, "fc(z)=z^2+ c where c = (%f %+f );  %s", creal(c), cimag(c),comment);





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp);	// write whole array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  if ( rSize == iSize) 
  	{
  		printf ("File %s saved ", filename);
  		if (long_comment == NULL || strlen (long_comment) == 0)
    		printf ("\n");
  			else { printf (". Comment = %s \n", long_comment); }
  	}
  	else {printf("wrote %zu elements out of %u requested\n", rSize,  iSize);}

  return 0;
}
















int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  
  printf("for DEM/J \n");
  if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
	printf("Max distance from exterior to the boundary =  distanceMax = %.16f = %f pixels\n",  distanceMax, BoundaryWidth); 
  
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
  
  printf ("For LSM/J \n");
  printf ("Maximal number of iterations = iterMax_LSM = %ld \n", iterMax_LSM);
  printf ("Escape Radius = ER_LSM = %f \n", ER_LSM);
  
  
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}





int PrintInfoAboutPoint(complex double z){

	//unsigned int ix, iy;		// pixel coordinate
	// to do 
	
	double arg;
	unsigned char iColor;
	
	arg = Give_Arg( z, 2500); //   N in wiki
	iColor = ComputeColorOfSAC(z);
	
	printf ("parameter z = ( %.16f ; %.16f ) \n", creal(z), cimag(z));
	printf ("SAC/J : arg = %.16f ; iColor = %d  \n", arg, iColor);
	
	

	return z; 

}

// find such ER for LSM/J that level curves croses critical point and it's preimages
double GiveER(int i_Max){

	complex double z= 0.0; // criical point
	int i;
	 ; // critical point escapes very fast here. Higher valus gives infinity
	for (i=0; i< i_Max; ++i ){
		z=z*z +c; 
	 
	 }
	 
	 return cabs(z);
	
	
}








// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  fprintf (stderr, "setup start\n");
  c = 0.35; // parabolic parameter   
  
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight* DisplayAspectRatio;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  
  
   SetZPlane( center, radius,  DisplayAspectRatio );	

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
	
  wPixelWidth = (WxMax-WxMin)/ixMax;
  wPixelHeight =(WyMax-WyMin)/iyMax;
	
  
  //ER2 = ER * ER; // for numerical optimisation in iteration
  lnER = log(EscapeRadius); // ln(ER) 
  ER_LSM = GiveER(10); // find such ER for LSM/J that level curves croses critical point and it's preimages
  ER_DLD = GiveER(15);
  
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  edge2 = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL || edge2 == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
 	
  
  BoundaryWidth = 6.0*iWidth/2000.0  ; //  measured in pixels ( when iWidth = 2000) 
  distanceMax = BoundaryWidth*PixelWidth;
  
  
  
  fprintf (stderr," end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  fprintf (stderr," allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  free(edge2);
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
   
  
  DrawImagerOfDEMJ(data);
  SaveArray2PGMFile (data, iWidth+1, "boundary using DEM/J");
  
  
  
  DrawImagerOfBD(data);
  SaveArray2PGMFile (data, iWidth+2, "BD/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+3, "boundaries of BD/J");
  
  DrawImagerOMfBD(data);
  SaveArray2PGMFile (data, iWidth+4, "MBD/J");
  
  ComputeBoundaries(data, edge2);
  SaveArray2PGMFile (edge2, iWidth+5, "boundaries of MBD/J");
  
  
  
 
  DrawImagerOfLSM(data);
  SaveArray2PGMFile (data, iWidth+6, "LSM/J");
  
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+7, "boundaries of LSM/J");
  
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+8, "LSM + boundaries of LSM/J");
  
  CopyBoundaries(edge, edge2);
  SaveArray2PGMFile (edge2, iWidth+9, "boundaries of LSM/J and MBD");
  
  
  DrawImagerOfUnknown(data);
  SaveArray2PGMFile (data, iWidth+10, "Unknown : boundary and slow dynamics");
  
    
  DrawImagerOMfSAC(data);
  SaveArray2PGMFile (data, iWidth+11, "SAC/J + DEM/J");
  
  DrawDLDImage(data);
  DrawImagerOfDEMJ_boundary(data);
 SaveArray2PGMFile (data, iWidth+12, "DLD/J + boundary by DEM");
  
  // inverterd plane = wplane = 1/z plane
  
  DrawImagerOfBD_inv(data);
  SaveArray2PGMFile (data, iWidth+13, "BD/J inverted ");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+14, "boundaries of BD/J inv");
  
  DrawImagerOMfSAC_inv(data);
  SaveArray2PGMFile (data, iWidth+15, "SAC/J + DEM/J inverted");
  
  DrawImagerOfLSM_inv(data);
  SaveArray2PGMFile (data, iWidth+16, "LSM/J inv");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+17, "boundaries of LSM/J inv");
  
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+18, "LSM + boundaries of LSM/J inv");
  
  
  // test images
  DrawImagerOfDEMJ(data);
  CheckZPlaneOrientation(data);
  SaveArray2PGMFile (data, iWidth+19, "boundary using DEM/J and first quadrant");
  
  DrawImagerOfDEMJ(data);
  ShowWWindowOnZWindow(data);
  SaveArray2PGMFile (data, iWidth+20, "W Window On Z Window");
  //
  end();

  return 0;
}

bash source code

[edit]
#!/bin/bash 
 
# script file for BASH 
# which bash
# save this file as g.sh
# chmod +x g.sh
# ./g.sh
# checked in https://www.shellcheck.net/

 
# for all pgm files in this directory
#!/bin/bash
for file in *.pgm ; do
  # b is name of file without extension
  b=$(basename "$file" .pgm)
  # convert  using ImageMagic
  convert "${b}".pgm -resize 600x600 "${b}".png
  echo "$file"
done

 
echo OK
# end


text output

[edit]
File 10001.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundary using DEM/J 
File 10002.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  BD/J 
File 10003.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of BD/J 
File 10004.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  MBD/J 
File 10005.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of MBD/J 
File 10006.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  LSM/J 
File 10007.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of LSM/J 
File 10008.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  LSM + boundaries of LSM/J 
File 10009.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of LSM/J and MBD 
File 10010.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  Unknown : boundary and slow dynamics 
File 10011.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  SAC/J + DEM/J 
File 10012.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  DLD/J + boundary by DEM 
File 10013.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  BD/J inverted  
File 10014.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of BD/J inv 
File 10015.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  SAC/J + DEM/J inverted 
File 10016.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  LSM/J inv 
File 10017.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundaries of LSM/J inv 
File 10018.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  LSM + boundaries of LSM/J inv 
File 10019.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  boundary using DEM/J and first quadrant 
File 10020.pgm saved . Comment = fc(z)=z^2+ c where c = (0.350000 +0.000000 );  W Window On Z Window 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( 0.3500000000000000 ; 0.0000000000000000 ) 
Image Width = 2.800000 in world coordinate
PixelWidth = 0.000280 
for DEM/J 
Max distance from exterior to the boundary =  distanceMax = 0.0084008400840084 = 30.000000 pixels
Maximal number of iterations = iterMax = 1000000 
For LSM/J 
Maximal number of iterations = iterMax_LSM = 255 
Escape Radius = ER_LSM = 27.763998 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 9.3.0

real	2m15,768s

references

[edit]


Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:19, 20 November 2020Thumbnail for version as of 20:19, 20 November 20202,000 × 2,000 (333 KB)Soul windsurfer (talk | contribs)Uploaded own work with UploadWizard

File usage on other wikis

The following other wikis use this file:

Metadata