File:GaussianProcessDecomposition 3RandomSignals.svg
Original file (SVG file, nominally 378 × 270 pixels, file size: 30 KB)
Captions
Summary
[edit]DescriptionGaussianProcessDecomposition 3RandomSignals.svg |
English: Three randomly generated signals that follow certain Gaussian processes.
Deutsch: Drei zufällig erzeugte Signale, die bestimmten Gaußprozessen folgen. |
Date | |
Source | Own work |
Author | Christian Schirm |
SVG development InfoField | This plot was created with Matplotlib. |
Source code InfoField | Python code#This source code is public domain
#Author: Christian Schirm
import numpy, scipy.spatial
import matplotlib.pyplot as plt
import imageio
numpy.random.seed(50)
# Covariance matrix
def covMat(x1, x2, covFunc, noise=0):
cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
return cov
# Decomposition of e.g. sum of signals into components
def decompose(xIn, yIn, xOut, covFuncIn, covFuncListOut):
Ckk = covMat(xIn, xIn, covFuncIn, noise=0)
n = len(covFuncListOut)
N = len(xOut)
Cuu = numpy.zeros((n*len(xOut), n*len(xOut)))
Cuk = numpy.zeros((n*len(xOut), len(xOut)))
for i,covOut in enumerate(covFuncListOut):
Cuu[i*N:(i+1)*N, i*N:(i+1)*N] = covMat(xOut, xOut, covOut, noise=0)
Cuk[i*N:(i+1)*N,:] = covMat(xOut, xIn, covOut, noise=0)
CkkInv = numpy.linalg.inv(Ckk)
y = Cuk.dot(CkkInv.dot(yIn))
sigmaSplit = (Cuu - Cuk.dot(CkkInv.dot(Cuk.T)))
return y, sigmaSplit
# Covariance function 1: smooth random signal underground
covFunc1 = lambda d: 2.7**2*numpy.exp(-((d/1.)**2))
# Covariance function 2: periodic signal
covFunc2 = lambda d: 2.7**2*numpy.exp(-0.4*numpy.abs((numpy.sin(numpy.pi*d/2.5))))
# Covariance function 3: white gaussian noise
covFunc3 = lambda d: d*0 + 0.8**2*(numpy.abs(d)<0.00001)
# Covariance function of sum
covFuncSum = lambda d: covFunc1(d) + covFunc2(d) + covFunc3(d)
x = numpy.linspace(0, 10, 300)
# Generate random signales
Y = []
for covFunc in covFunc1, covFunc2, covFunc3:
y = numpy.random.multivariate_normal(x.ravel()*0, covMat(x, x, covFunc))
Y += [y]
# perform decomposition
YSplit = []
YSigma = []
ySplit, sigmaSplit = decompose(x, Y[0]+Y[1]+Y[2], x, covFuncSum, [covFunc1, covFunc2, covFunc3])
YSplit = ySplit.reshape(3,len(x))
# set prior mean of signals 1 and 2
meanShift = 3
YSplit[0] += meanShift
Y[0] += meanShift
YSplit[1] -= meanShift
Y[1] -= meanShift
# Random gaussian process signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
plt.plot(x, Y[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_3RandomSignals.svg')
plt.show()
# Sum of all 3 signals
fig = plt.figure(figsize=(4.2,3.0))
plt.plot(x, (Y[0]+Y[1]+Y[2]), 'r-', label=u'Prediction')
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_SumOf3Signals.svg')
plt.show()
# plot figures
# Decomposion of sum into single signals
fig = plt.figure(figsize=(4.2,3.0))
for i,c in (2,1), (0,0), (1,2):
plt.plot(x, Y[i], '--', color='C'+str(c), label=u'Prediction',alpha=0.4)
plt.plot(x, YSplit[i], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
plt.savefig('GaussianProcessDecomposition_DecomposedSignals.svg')
plt.show()
# Uncertainty animation
t = numpy.arange(0, 1, 0.02)
covFunc = lambda d: numpy.exp(-(3*numpy.sin(d*numpy.pi))**2) # Covariance function
chol = numpy.linalg.cholesky(covMat(t, t, covFunc, noise=1E-5))
r = chol.dot(numpy.random.randn(len(t), len(sigmaSplit)))
cov = sigmaSplit+1E-5*numpy.identity(len(sigmaSplit))
rSmooth = numpy.linalg.cholesky(cov).dot(r.T).reshape(3,len(x),len(t))
images = []
fig = plt.figure(figsize=(4.2,3.0))
for ti in [0]+list(range(len(t))):
for i,c in (2,1), (0,0), (1,2):
plt.plot(x, YSplit[i] + rSmooth[i,:,ti], color='C'+str(c), label=u'Prediction',alpha=1)
plt.axis([0,10,-10,10])
plt.xlabel('t')
plt.tight_layout()
fig.canvas.draw()
s, (width, height) = fig.canvas.print_to_buffer()
images.append(numpy.array(list(s), numpy.uint8).reshape((height, width, 4)))
fig.clf()
# Save GIF animation
imageio.mimsave('GaussianProcessDecomposition_Uncertainty.gif', images[1:])
|
Licensing
[edit]This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:18, 1 August 2019 | 378 × 270 (30 KB) | Physikinger (talk | contribs) | With random seed | |
21:03, 29 July 2019 | 378 × 270 (30 KB) | Physikinger (talk | contribs) | new | ||
10:06, 4 September 2018 | 378 × 270 (32 KB) | Physikinger (talk | contribs) | bigger label | ||
09:44, 4 September 2018 | 405 × 315 (32 KB) | Physikinger (talk | contribs) | axis label | ||
14:08, 3 September 2018 | 405 × 315 (31 KB) | Physikinger (talk | contribs) | Improved colors | ||
09:11, 3 September 2018 | 405 × 315 (31 KB) | Physikinger (talk | contribs) | User created page with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
File usage on other wikis
The following other wikis use this file:
- Usage on de.wikipedia.org
- Usage on en.wikibooks.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Width | 302.4pt |
---|---|
Height | 216pt |