File:Fictional exoplanet surface temperature c mean annual 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,792 × 1,184 pixels, file size: 523 KB, MIME type: image/png)

Captions

Captions

Fictional exoplanet surface temperature c day 180

Summary

[edit]
Description
English: Fictional exoplanet surface temperature c day 180
Date
Source Own work
Author Merikanto

This temperature map is generated with Exoplasim python script, variable tsa. "Surface temperature (0m)"

Nasa Panoply visualization.

https://www.giss.nasa.gov/tools/panoply/

You can use this bundle of code.


Must install to anaconda Python3 version==3.6 ! Newer maybe exoplasim not function!


Exoplasim params

a_eccentricity1=0.01671022 a_obliquity1=23.44 a_lonvernaleq1=102.7 a_pCO21=360e-6

Map is generated in online

Planet Map Generator

https://topps.diku.dk/torbenm/maps.msp

seed 1111111

("7x1")

projection square palette greyscale reso 6400x3200 for input "accumap.png"

This link offers you code to run this:

Tested under windows 11:

Warning: you need many additional utils to run these script collection.

https://commons.wikimedia.org/wiki/File:Annual_mean_temperature_planet_15_percent_sea_1.png

Exoplasim is here

https://pypi.org/project/exoplasim/

https://github.com/alphaparrot/ExoPlaSim

Script to create input nc dem from png / or bmp rgb coded grayscale image

Extract script

Basic exoplasim input map generating "R" code

    1. "R" script bmp exoplanet dem to netcdf georaster
    2. uses pixmap, bmp
    1. 28.07.2022 0000.0005
  1. install.packages("bmp")

library(raster) library(ncdf4) library(rgdal) library(pixmap) library(png) library(bmp) library(stringr)

save_as_nc<-function(outname1,r, outvar1, longvar1, unit1) { ext2<-c(-180, 180, -90,90) extent(r)<-ext2 crs(r)<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(r, outname1, overwrite=TRUE, format="CDF", varname=outvar1, varunit=unit1,

       longname=longvar1, xname="lon",   yname="lat")

}

bmp_dem_to_nc<-function(inbmpname1, outncname1, deltaz1, sealevel1) { #bm1=read.bmp(inbmpname1) print(inbmpname1) bm1=readPNG(inbmpname1, native = FALSE, info = FALSE) str(bm1) plot(bm1) #stop(-1)


pr1=pixmapGrey(bm1) data00<-pr1@grey data01<-data00 dim1=dim(data01) dimx=dim1[1] dimy=dim1[2] print (dimx) print (dimy) rin1 <- raster(data01) ext1<-c(-180, 180, -90,90) extent(rin1)<-ext1 min1=minValue(rin1) max1=maxValue(rin1) delta1=max1-min1 rin2=(rin1-min1)/delta1 rin3=(rin1*deltaz1)-sealevel1 #image(rin3) rin3a<-flip(rin3, direction="y")

save_as_nc(outncname1,rin3, "z", "z", "m")

  1. rin4=flip(rin3)
  2. outncname2=paste0(outncname1,"sand_flipped.nc")
  1. save_as_nc(outncname2,rin4, "z", "z", "m")

return(rin3) }

process_base_rasters<-function(infile1, file2, file3, masksealevel1) { ## create absolute sealevel dem and lon, lat ras

ur1<-raster(infile1)

ur1<-ur1-masksealevel1

ur1[ur1[]<1] <- 0

#ur1<-flip(ur1)

lonr1 <- init(ur1, 'x')

latr1 <- init(ur1, 'y')

crs(ur1)<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(ur1, file2, overwrite=TRUE, format="CDF", varname="Band1", varunit="m",

       longname="Band1", xname="lon",   yname="lat")

writeRaster(ur1, file3, overwrite=TRUE, format="GTiff", varname="Band1", varunit="m",

       longname="Band1", xname="lon",   yname="lat")
       
  crs(lonr1)<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
  crs(latr1)<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
 
  1. writeRaster(lonr1, "./origo/lons.nc", overwrite=TRUE, format="CDF", varname="Band1", varunit="deg",
  2. longname="Band1", xname="lon", yname="lat")
  3. writeRaster(latr1, "./origo/lats.nc", overwrite=TRUE, format="CDF", varname="Band1", varunit="deg",
  4. longname="Band1", xname="lon", yname="lat")

}

create_mask_rasters<-function(infile1,maskname1,demname1) {

ur1<-raster(infile1) ur1[ur1[]<1] <- 0 ## jn warning flip! #rdem1=flip(ur1) r=flip(ur1) #r=ur1 rdem1=ur1


mini=minValue(rdem1) maxi=maxValue(rdem1) delta=maxi-mini rdem2=(rdem1/delta)*255

dims<-dim(r)

r[r[]<1] <- 0 r[r[]>0] <- 1

zeros1<-sum(r[]==0) ones1<-sum(r[]==1)

print(zeros1) print(ones1) stop(-1)

image(r)

print (dims[1]) print (dims[2])

rows=dims[2] cols=dims[1]

mask0<-r mask1<-mask0[]

idem1<-rdem2[] mask2<-matrix(mask1, ncol=cols, nrow=rows ) idem2<-matrix(idem1, ncol=cols, nrow=rows ) #mask3<-t(mask2) #idem3<-t(idem2) mask3<-mask2 idem3<-idem2 r <- writePNG(mask3, maskname1) r <- writePNG(idem3, demname1) }

createmask <- function(dem1, demname2, maskname1, maskname2,maskname3, maskname4, masksealevel1) {

 dem2<-(dem1+abs(masksealevel1))
 
 mask2<-dem2
 mask1<-dem2
 
 mask2[mask2 > 1 ]=255
 mask2[mask2 < 0 ]=0 
 
 mask1[mask1 > -1 ]=0
 mask1[mask1 < 0 ]=255  
 
 	zeros1<-sum(mask2[]==0)

ones1<-sum(mask2[]==255) all1=zeros1+ones1

landsearatio1=(100*zeros1)/all1


print(zeros1) print(ones1) print (all1) print(800*1600) print("Sea per cent of total surface:") print(landsearatio1)

#print("TEBUK STOP !!!") #stop(-1)


 image(dem1)
 image(mask1)
 image(mask2)
   
 #dem2<-flip(dem2, direction= "y")
 #mask1<-flip(mask1, direction="y") 
 #mask2<-flip(mask2, direction="y")    
 
 ext1<- extent(0, 360, -90, 90)
 ext2<- extent(-180, 180, -90, 90) 
 
 mask30<-mask1
 extent(mask30) <- ext1
 mask3 <- rotate(mask30)
 extent(mask3) <- ext1
 mask40<-mask2
 extent(mask40) <- ext1
 mask4 <- rotate(mask40)
 extent(mask4) <- ext1
 
 save_as_nc(demname2,dem2, "Band1", "Band1", "")
 save_as_nc(maskname1,mask1, "Band1", "Band1", "")
 save_as_nc(maskname2,mask2, "Band1", "Band1", "")
 save_as_nc(maskname3,mask3, "Band1", "Band1", "")
 save_as_nc(maskname4,mask4, "Band1", "Band1", "")  
 

}


  1. inbmpname1="./indata/dryplanet1.bmp" ## bmp planet dem map
  2. inbmpname1="./indata/Map-111.bmp" ## bmp planet dem map
  3. inbmpname1="./indata/Map-111.png" ## bmp planet dem map
    1. here
  1. https://topps.diku.dk/torbenm/maps.msp
  2. seed 1111111, rectangular, greyscale
    1. reso 6400x3200

inbmpname1="./indata/inmap.png" ## bmp planet dem map

outncname1="./indata/dryplanet1.nc"

  1. deltaz1=19600
    1. near same heights than in earth

deltaz1=11200+8400 ## difference of output min, max height

    1. sealevel, that used to create dem

sealevel1=11200 #desert planet, sealevel 0

    1. sealevel, that used in landsea mask
    1. "real sea level"

masksealevel1=-8000.0


file2="./indata/dryplanet_dem.nc" file3="./indata/dryplanet_dem.tif"

maskname1= "./indata/dryplanet_mask_land.nc" maskname2= "./indata/dryplanet_mask_sea.nc" maskname3= "./indata/dryplanet_mask_land_rotated.nc" maskname4= "./indata/dryplanet_mask_sea_rotated.nc"

demname1= "./indata/dryplanet_dem.nc" demname2= "./indata/dryplanet_dem_sealevel.nc"

dem1<-bmp_dem_to_nc(inbmpname1, outncname1, deltaz1, sealevel1)

createmask(dem1,demname2,maskname1, maskname2, maskname3, maskname4, masksealevel1)

  1. process_base_rasters(outncname1, file2, file3, masksealevel1)
  2. create_mask_rasters(file2,maskname1,demname1)

Exoplasim running code

    1. Exoplasim planet running code
    2. exoplasim example
    3. stepper code
    1. 10.08.2022 0000.0001
    1. in ubuntu you must install
    1. pip3 install exoplasim[netCDF4]
    2. not
    3. "sudo pip3 install exoplasim[netCDF4]"

import numpy as np import math as math import matplotlib.pyplot as plt from scipy.interpolate import interp2d import netCDF4

import exoplasim as exo


NLAT=0 NLON=0


def writeSRA(name,kcode,field,NLAT,NLON):

   label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)


def writeSRA2(label,kcode,field,NLAT,NLON):

   #label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)


def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): nlat1=len(xoutlats1) nlon1=len(xoutlons1) #indata_set1=indata1 print(outfilename1) ncout1 = netCDF4.Dataset(outfilename1, 'w', format='NETCDF4') outlat1 = ncout1.createDimension('lat', nlat1) outlon1 = ncout1.createDimension('lon', nlon1) outlats1 = ncout1.createVariable('lat', 'f4', ('lat',)) outlons1 = ncout1.createVariable('lon', 'f4', ('lon',)) outvalue1 = ncout1.createVariable(outvarname1, 'f4', ('lat', 'lon',)) outvalue1.units = 'Unknown' outlats1[:] = xoutlats1 outlons1[:] = xoutlons1 outvalue1[:, :] =xoutvalue1[:] ncout1.close() return 0


def loadnetcdf_single_tomem(infilename1, invarname1): global cache_lons1 global cache_lats1 print(infilename1) inc1 = netCDF4.Dataset(infilename1) inlatname1="lat" inlonname1="lon" inlats1=inc1[inlatname1][:] inlons1=inc1[inlonname1][:] cache_lons1=inlons1 cache_lats1=inlats1 indata1_set1 = inc1[invarname1][:] dim1=indata1_set1.shape nlat1=dim1[0] nlon1=dim1[1] inc1.close() return (indata1_set1)


def create_sras(topo, seamasklevel1):

global NLAT global NLON


topo2=np.copy(topo)

seamasklevel2=seamasklevel1+1.0 topo2[topo2 < seamasklevel1] = seamasklevel1 masko=np.copy(topo2) masko[masko == seamasklevel1] = -9999999 masko[masko > seamasklevel1] = 1 masko[masko == -9999999 ] = 0

grid=np.flipud(masko) name="Example" writeSRA(name,129,topo,NLAT,NLON) writeSRA(name,172,grid,NLAT,NLON) writeSRA2("topo.sra",129,topo2,NLAT,NLON) writeSRA2("landmask.sra",172,grid,NLAT,NLON) return(0)


def convert_to_t21(infilename1, outfilename1, seamasklevel1):

global NLAT global NLON

indimx=361 indimy=181 #indimx=360 #indimy=360

## t21 64x32 shapex=64 shapey=32 NLAT=shapex NLON=shapey nc = netCDF4.Dataset(infilename1)

inlats=nc['lat'][:] inlons=nc['lon'][:] #print(inlats) #print(inlons) latlen=len(inlats) lonlen=len(inlons)


#print(lonlen, latlen)

indimx=lonlen indimy=latlen

dem000=nc['z'] dem=np.flipud(dem000) #dem=dem000 dem2=np.copy(dem) #dem2[dem2 < 0] = 0 #plt.imshow(dem,cmap='gist_earth') #plt.imshow(dem2,cmap='gist_earth') #plt.show() #quit(0) lts0=[85.7606, 80.2688, 74.7445, 69.2130, 63.6786, 58.1430, 52.6065, 47.0696, 41.5325,35.9951, 30.4576, 24.9199, 19.3822, 13.8445, 8.3067, 2.7689, -2.7689, -8.3067, -13.8445, -19.3822, -24.9199, -30.4576, -35.9951, -41.5325, -47.0696, -52.6065, -58.1430, -63.6786, -69.2130, -74.7445, -80.2688, -85.7606]

## lns0=[0, 5.6250, 11.2500, 16.8750, 22.5000, 28.1250, 33.7500 ,39.3750, 45.0000, 50.6250, 56.2500, 61.8750, 67.5000, 73.1250, 78.7500, 84.3750, 90.0000, 95.6250, 101.2500, 106.8750, 112.5000, 118.1250, 123.7500, 129.3750, 135.0000, 140.6250, 146.2500, 151.8750, 157.5000, 163.1250, 168.7500, 174.3750, 180.0000, 185.6250, 191.2500, 196.8750, 202.5000, 208.1250, 213.7500, 219.3750, 225.0000, 230.6250, 236.2500, 241.8750, 247.5000, 253.1250, 258.7500, 264.3750, 270.0000, 275.6250, 281.2500, 286.8750, 292.5000, 298.1250, 303.7500, 309.3750, 315.0000, 320.6250, 326.2500, 331.8750, 337.5000, 343.1250, 348.7500, 354.3750]

lts1=np.array(lts0) lns1=np.array(lns0)

lns=lns1 lts=np.flip(lts1)

ly2=len(lts) lx2=len(lns) shapex=lx2 shapey=ly2

#print("sheip") #print(shapex, shapey)


lons, lats = np.meshgrid(lns,lts) #print (lts) #print (lns) new_W, new_H = (shapey,shapex) xrange = lambda x: np.linspace(0, 360, x) f2 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #f2 = interp2d(range(indimx), range(indimy), dem2, kind="cubic") demo = f2(xrange(shapex), xrange(shapey)) #plt.imshow(demo) #plt.show() #quit(0) f3 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #masko = f3(xrange(shapex), xrange(shapey)) #topo=np.flipud(demo) topo=np.copy(demo) topo2=np.copy(topo) masko=np.copy(topo)

seamasklevel2=seamasklevel1+1.0

topo2[topo2 < seamasklevel1] = seamasklevel1

masko=np.copy(topo2) masko[masko == seamasklevel1] = -9999999 masko[masko > seamasklevel1] = 1 masko[masko == -9999999 ] = 0 #plt.imshow(demo) #plt.imshow(masko) #plt.imshow(topo2) #plt.show()

#grid=np.fliplr(masko) #def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): savenetcdf_single_frommem(outfilename1, "z", topo,lts,lns) savenetcdf_single_frommem("mapt21.nc", "z", topo2,lts,lns) savenetcdf_single_frommem("maskt21.nc", "z", masko,lts,lns) return(topo,lons,lats)


    1. exoplasim ,,,

def run_exoplasim_wx(a_input_dem1,s_seamasklevel1, a_gridtype, a_layers, a_years,a_timestep,a_snapshots,a_ncpus,a_eccentricity,a_obliquity,a_lonvernaleq,a_pCO2):

#output_format=".npz" output_format=".nc"

a_pO2=1-a_pCO2-0.79 a_pN2=(1-0.21-a_pCO2)

print("Precess input grid, to type ",a_gridtype)

if(a_gridtype=="T21"): print("T21") topo, lons, lats=convert_to_t21(a_input_dem1,"demT21.nc", a_seamasklevel1)


create_sras(topo, a_seamasklevel1)

print("Creating exoplasim object ")

testplanet= exo.Earthlike(workdir="planet_run",modelname="PLANET",ncpus=a_ncpus,resolution=a_gridtype,layers=a_layers, outputtype=output_format, crashtolerant=True)

## earth 21000 BP glaciers1= { "toggle": True, "mindepth":2, "initialh":-1 }

testplanet.configure( startemp=5772.0, flux=1367,# Stellar parameters eccentricity=a_eccentricity, obliquity=a_obliquity, lonvernaleq=a_lonvernaleq, year=365, fixedorbit=True, # Orbital parameters rotationperiod=1, # Rotation topomap="topo.sra", landmap="landmask.sra", radius=1.0, gravity=9.80665, # Bulk properties #seaice=False, #maxsnow=False, #glaciers=False, #stormclim=False, #vegetation=0, wetsoil=True, #alters albedo of soil based on how wet it is

               vegetation=2,                               #toggles vegetation module; 1 for static vegetation, 2 to allow growth
               vegaccel=1, 

seaice=True, maxsnow=-1, glaciers=glaciers1, #stormclim=True, #vegetation=0, pN2=a_pN2, pCO2=a_pCO2, pO2=a_pO2, ozone=True, # Atmosphere timestep=a_timestep, snapshots=0, ## jos a_snapshots, vie muistia! #wetsoil=True, physicsfilter="gp|exp|sp") # Model dynamics


testplanet.exportcfg()

print("Running ExoPlasim ... ")

#testplanet.run(years=a_years,crashifbroken=True)

testplanet.run(years=a_years,crashifbroken=True)


return(0)


    1. stepper exoplasim ...

def run_exoplasim_wy(a_input_dem1,s_seamasklevel1, a_gridtype, a_layers, a_years,a_timestep,a_snapshots,a_ncpus,a_eccentricity,a_obliquity,a_lonvernaleq,a_pCO2):

print("Exoplasim runner")

a_startemp=5772.0 a_baseflux=1367 a_yearlength=365 a_radius=1.0 a_gravity=9.80665 a_rotationperiod=1

a_pO2=1-a_pCO2-0.79 a_pN2=(1-0.21-a_pCO2)

output_format=".nc"

print("Precess input grid, to type ",a_gridtype)

if(a_gridtype=="T21"): print("T21") topo, lons, lats=convert_to_t21(a_input_dem1,"demT21.nc", a_seamasklevel1)


create_sras(topo, a_seamasklevel1)

print("Creating exoplasim object ")

testplanet= exo.Earthlike(workdir="planet_run",modelname="PLANET",ncpus=a_ncpus,resolution=a_gridtype,layers=a_layers, outputtype=output_format, crashtolerant=True)

glaciers1= { "toggle": True, "mindepth":2, "initialh":-1 }

testplanet.configure( startemp=a_startemp, flux=a_baseflux,# Stellar parameters eccentricity=a_eccentricity, obliquity=a_obliquity, lonvernaleq=a_lonvernaleq, year=a_yearlength, fixedorbit=True, # Orbital parameters rotationperiod=a_rotationperiod, # Rotation topomap="topo.sra", landmap="landmask.sra", radius=a_radius, gravity=a_gravity, # Bulk properties #seaice=False, #maxsnow=False, #glaciers=False, #stormclim=False, #vegetation=0, wetsoil=True, #alters albedo of soil based on how wet it is

               vegetation=2,                               #toggles vegetation module; 1 for static vegetation, 2 to allow growth
               vegaccel=1, 

seaice=True, maxsnow=-1, glaciers=glaciers1, #stormclim=True, #vegetation=0, pN2=a_pN2, pCO2=a_pCO2, pO2=a_pO2, ozone=True, # Atmosphere timestep=a_timestep, snapshots=0, ## jos a_snapshots, vie muistia! #wetsoil=True, physicsfilter="gp|exp|sp") # Model dynamics


testplanet.exportcfg()


looplen1=a_runsteps1

peen=0 runc1=1

print("Phase 2 !!! Stepper runner.")

for n in range(0,looplen1): print("Exoplasim runner year ",n)

a_years2=1 runc1=1

testplanet.run(years=1,crashifbroken=True) savename = 'planet_run_'+str(runc1) testplanet.finalize(savename,allyears=False,clean=False,keeprestarts=True) testplanet.save(savename) tas=testplanet.inspect("tas") tas2=np.ravel(tas) tmean1=np.mean(tas2) tmean2=math.floor( (tmean1-273.15)*100) tmean3=tmean2/100 print("Mean tas "+str(tmean3) )


print("Return.")

return(0)



print(" Exoplasim simulation code ---")


input_dem="./indata/dryplanet1.nc" ##dem of exoplanet


a_modelname1="planet" a_workdir1="planet_run"

a_runsteps1=300 a_years1=a_runsteps1 a_timestep1=30 a_snapshots1=0 a_ncpus1=4 a_layers1=8 a_outputtype1=".nc"

  1. a_resolution1="T42"

a_resolution1="T21" a_precision1=4 a_crashtolerant1=True a_landmap1="landmask.sra" a_topomap1="topo.sra" a_seamasklevel1=-8000

    1. earth nowadays

a_eccentricity1=0.01671022 a_obliquity1=23.44 a_lonvernaleq1=102.7 a_pCO21=360e-6


print("Exoplasim ...")

    1. attempt to run exoplasim stepper code

run_exoplasim_wy(input_dem, a_seamasklevel1, a_resolution1, a_layers1, a_years1,a_timestep1,a_snapshots1,a_ncpus1,a_eccentricity1,a_obliquity1,a_lonvernaleq1,a_pCO21)

  1. run_exoplasim_w(input_dem, a_seamasklevel1, a_resolution1, a_layers1, a_years1,a_timestep1,a_snapshots1,a_ncpus1,a_eccentricity1,a_obliquity1,a_lonvernaleq1,a_pCO21)


print(".")



Exoplasim running restart code attempt only



Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:07, 3 August 2022Thumbnail for version as of 06:07, 3 August 20221,792 × 1,184 (523 KB)Merikanto (talk | contribs)Update
10:44, 31 July 2022Thumbnail for version as of 10:44, 31 July 20221,792 × 1,184 (514 KB)Merikanto (talk | contribs)Update
06:28, 26 July 2022Thumbnail for version as of 06:28, 26 July 20221,792 × 1,184 (712 KB)Merikanto (talk | contribs)Update
06:26, 27 December 2021Thumbnail for version as of 06:26, 27 December 20211,760 × 1,168 (817 KB)Merikanto (talk | contribs)More accurate dem
13:56, 26 December 2021Thumbnail for version as of 13:56, 26 December 20211,472 × 976 (537 KB)Merikanto (talk | contribs)Different base map
10:04, 18 December 2021Thumbnail for version as of 10:04, 18 December 20211,904 × 1,264 (449 KB)Merikanto (talk | contribs)Update of code
14:51, 16 December 2021Thumbnail for version as of 14:51, 16 December 20211,472 × 976 (553 KB)Merikanto (talk | contribs)ocean mask
11:20, 16 December 2021Thumbnail for version as of 11:20, 16 December 20211,760 × 1,088 (475 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

The following page uses this file: