File:Dynamic dunes ESA23210854.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 800 × 273 pixels. Other resolutions: 320 × 109 pixels | 640 × 218 pixels | 1,024 × 349 pixels | 1,280 × 436 pixels | 5,246 × 1,788 pixels.
Original file (5,246 × 1,788 pixels, file size: 17.03 MB, MIME type: image/png)
File information
Structured data
Captions
Summary
[edit]DescriptionDynamic dunes ESA23210854.png |
English: At first glance this captivating scene peering through wispy clouds and down onto a dune field is reminiscent of a satellite view of one of Earth’s deserts, but this is in fact a beautiful landscape on Mars. This spectacular dune field sits in the centre of Lomonosov crater, deep in the northern hemisphere of Mars (65ºN, 351ºE). It was imaged by the CaSSIS camera on the ESA-Roscosmos ExoMars Trace Gas Orbiter (TGO) on 2 December, 2020. The image was taken as part of a campaign to track the evolution of the dune field throughout the year. At this time, northern winter was coming to an end on Mars and the frost over these areas had begun to sublimate. The darker spots indicate areas where frost has sublimated and the darker basaltic sand is visible. The crests of the dunes indicate the average wind direction, in this case, the wind comes predominantly from the bottom left to the top right of the image. To the right, darker, more basaltic rich and frost-free sediments are visible. It is also in the right of the image that bright white clouds stand out against the darker sediments on the ground. The image was released on the occasion of the five year launch anniversary of the mission. The first five years TGO launched from the Baikonur Cosmodrome in Kazakhstan on 14 March 2016, arriving at Mars seven months later. It spent several months aerobraking – using the top of the planet’s atmosphere to create drag and slow down – to became the first ESA spacecraft used to enter its science orbit in this way. The mission began full science operations in April 2018 with its suite of four instruments. TGO’s NOMAD and ACS spectrometers are designed to provide the best ever inventory of the planet’s atmospheric gases yet, and have already detected a new gas – hydrogen chloride – for the first time, as well as studying processes linked to atmospheric water escape in greater detail than ever. TGO is also adding to the lively debate surrounding the presence of methane on the planet by revealing a surprising lack of the mysterious gas. The FREND instrument is mapping the distribution of hydrogen in the uppermost metre of the planet’s surface, creating a detailed map of possible water-rich oases, relevant for future exploration of Mars. The CaSSIS camera has captured more than 20 000 images documenting the surface and complementing the data returned by the other instruments to help characterise features that may be related to trace gas sources. TGO also provides routine data relay for NASA’s landers and rovers: Opportunity (until its end of operations in 2018), Curiosity, Insight and Perseverance. It will also be the communication link for the second ESA-Roscosmos ExoMars mission, comprising the Rosalind Franklin rover and Kazachok platform, when it arrives on Mars in 2023. |
Date | 15 March 2021 (upload date) |
Source | Dynamic dunes |
Author | ESA/Roscosmos/CaSSIS |
Other versions |
|
Action InfoField | Imaging |
Activity InfoField | Space Science |
Keyword InfoField | Mars Dunes Sand dunes Clouds Surface features |
Mission InfoField | ExoMars ExoMars 2016 |
System InfoField | Trace Gas Orbiter (ExoMars) |
Licensing
[edit]This media was created by the European Space Agency (ESA).
Where expressly so stated, images or videos are covered by the Creative Commons Attribution-ShareAlike 3.0 IGO (CC BY-SA 3.0 IGO) licence, ESA being an Intergovernmental Organisation (IGO), as defined by the CC BY-SA 3.0 IGO licence. The user is allowed under the terms and conditions of the CC BY-SA 3.0 IGO license to Reproduce, Distribute and Publicly Perform the ESA images and videos released under CC BY-SA 3.0 IGO licence and the Adaptations thereof, without further explicit permission being necessary, for as long as the user complies with the conditions and restrictions set forth in the CC BY-SA 3.0 IGO licence, these including that:
See the ESA Creative Commons copyright notice for complete information, and this article for additional details.
|
||
This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 IGO license. Attribution: ESA/Roscosmos/CaSSIS, CC BY-SA IGO 3.0
|
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:26, 15 March 2021 | 5,246 × 1,788 (17.03 MB) | OptimusPrimeBot (talk | contribs) | #Spacemedia - Upload of https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2021/03/dynamic_dunes/23210844-1-eng-GB/Dynamic_dunes.png via Commons:Spacemedia |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Software used | Adobe Photoshop 22.1 (Macintosh) |
---|---|
Date and time of digitizing | 01:56, 13 February 2021 |
File change date and time | 15:21, 14 March 2021 |
Date metadata was last modified | 15:21, 14 March 2021 |
Unique ID of original document | xmp.did:d9afe1aa-9e27-4d60-b993-60557809afcd |
Horizontal resolution | 39.37 dpc |
Vertical resolution | 39.37 dpc |