File:Cubic Julia set C =-0.040000000000000036-0.78*I with internal level curves.png
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 732 KB, MIME type: image/png)
File information
Structured data
Captions
Contents
Summary
[edit]DescriptionCubic Julia set C =-0.040000000000000036-0.78*I with internal level curves.png |
English: Cubic Julia set where c =-0.040000000000000036-0.78*I with internal level curves. Location by Roger Lee Bagula - here. The Julia set (boundary of filled-n Julia set) itself is not drawn: we see it as the locus of points where the level curves (= the boundaries of level sets) are especially close to each other = a place with high density of level curves. One can see also spiral from attracting point to repelling fixed point which is a place with high density of level curves. Points of critical orbit ( including crirital point and attractor) are on the level curves like notes on the musical staff. Level curves cross at critical point and its preimages. |
Date | |
Source | Own work |
Author | Adam majewski |
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
description of the map
[edit]coefficients read from input file cubic_p2_Bagula.txt degree 3 coefficient = ( +1.0000000000000000 +0.0000000000000000*i) degree 2 coefficient = ( +0.0000000000000000 +0.0000000000000000*i) degree 1 coefficient = ( +0.0000000000000000 +0.0000000000000000*i) degree 0 coefficient = ( -0.0400000000000000 -0.7800000000000000*i) Input polynomial p(z)=(1+0i)*z^3+(-0.040000000000000035527-0.78000000000000002665i) derivative dp/dz = (3+0i)*z^2 2 critical points found cp#0: -2.2351741790771484375e-08,-2.2351741790771484375e-08 . It's critical orbit is bounded and enters cycle #0 length=2 and it's stability = |multiplier|=0.95704 =attractive internal angle = 0.045777099465243623055 cycle = { 0.12845610612214106161,-0.42699144182978676643 ; -0.108141353107358687,-0.7232875185669475071 ; } cp#1: -2.2351741790771484375e-08,9.4296410679817199707e-09 . It's critical orbit is bounded and enters cycle #0
one can check using Maxima CAS that there is only one critical point z=0
%i1) f:z^3+c; 3 (%o1) z + c (%i2) diff(f,z,1); 2 (%o2) 3 z (%i3) solve(3*z^2=0); (%o3) [z = 0]
text output of c program
[edit]make chmod +x d.sh ./d.sh make pgm files display OMP info OPENMP DISPLAY ENVIRONMENT BEGIN _OPENMP = '201511' OMP_DYNAMIC = 'FALSE' OMP_NESTED = 'FALSE' OMP_NUM_THREADS = '8' OMP_SCHEDULE = 'DYNAMIC' OMP_PROC_BIND = 'FALSE' OMP_PLACES = '' OMP_STACKSIZE = '0' OMP_WAIT_POLICY = 'PASSIVE' OMP_THREAD_LIMIT = '4294967295' OMP_MAX_ACTIVE_LEVELS = '2147483647' OMP_CANCELLATION = 'FALSE' OMP_DEFAULT_DEVICE = '0' OMP_MAX_TASK_PRIORITY = '0' OMP_DISPLAY_AFFINITY = 'FALSE' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OPENMP DISPLAY ENVIRONMENT END setup start end of setup allways free memory (deallocate ) to avoid memory leaks real 4m13,453s user 31m19,822s sys 0m2,909s convert all pgm files to png using Image Magic convert FatouAnd B.pgm Fatou_b.pgm Fatou.pgm LCM_9.pgm LCM_cr.pgm LSM_9.pgm LSM_a.pgm delete all pgm files OK
c source code
[edit]/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >i.txt
time ./a.out >e.txt
convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
#include <limits.h> // Maximum value for an unsigned long long int
// https://sourceforge.net/p/predef/wiki/Standards/
#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
//FunctionType
typedef enum {Fatou = 0, IntLSM =1 , ExtLSM = 2, LSM = 3, DEM = 4, Unknown = 5 , BD = 6, MBD = 7 , SAC = 8, DLD = 9, ND = 10 , NP= 11, POT = 12 , Blend = 13
} FunctionTypeT;
// FunctionTypeT FunctionType;
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 20000; //
// The size of array has to be a positive constant integer
static unsigned long long int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
// see SetPlane
double radius = 1.5;
complex double center = 0.0;
double DisplayAspectRatio = 1.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3; //-0.05;
double ZxMax;// = 1.3; //0.75;
double ZyMin;// = -1.3; //-0.1;
double ZyMax;// = 1.3; //0.7;
double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
double ratio;
/*
ER = pow(10,ERe);
AR = pow(10,-ARe);
*/
//int ARe ; // increase ARe until black ( unknown) points disapear
//int ERe ;
double ER;
double ER2; //= 1e60;
double AR; // bigger values do not works
double AR2;
double AR_max;
//double AR12;
int IterMax = 100000;
int IterMax_LSM = 1000;
/* colors = shades of gray from 0 to 255
unsigned char colorArray[2][2]={{255,231}, {123,99}};
color = 245; exterior
*/
unsigned char iColorOfExterior = 245;
unsigned char iColorOfInterior1 = 99;
unsigned char iColorOfInterior2 = 183;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;
// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;
// critical points
// critical points
complex double zcr = 0.0; // only one critical point
//complex double zc2 = -2.2351741790771484375e-08+9.4296410679817199707e-09*I;
/*
*/
/* Roger Lee Bagula z^3 + C
c, z1, z2, z3 = -0.040000000000000036-0.78i, 0, 0, 1
-0.040000000000000036-0.78i, 0, 0, 1
for
https://www.marksmath.org/visualization/polynomial_julia_sets/
*/
const complex double C =-0.040000000000000036-0.78*I;
const int period = 2;
// periodic points = attractors
complex double z2a = 0.128494244956895 -0.427153520116896*I ; //first point of period 2 attracting cycle
complex double z2b = -0.108213690768581 -0.723219415137925*I ; //second point of period 2 attracting cycle
/* ------------------------------------------ functions -------------------------------------------------------------*/
// complex function
complex double fc(const complex double z0, const complex double c) {
double complex z = z0;
z = z*z*z + c;
return z;
}
// iterated function
complex double Fpc(const complex double z0, const complex double c, const int period) {
int p;
int pMax = period;
double complex z = z0;
for (p=0; p< pMax; ++p ){
z = fc(z,c);}
return z;
}
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double
GiveZy (int iy)
{
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double
GiveZ (int ix, int iy)
{
double Zx = GiveZx (ix);
double Zy = GiveZy (iy);
return Zx + Zy * I;
}
double cabs2(complex double z){
return creal(z)*creal(z)+cimag(z)*cimag(z);
}
/* find such AR for internal LCM/J and LSM that level curves croses critical point and it's preimages
for attracting ( also weakly attracting = parabolic) dynamics
it may fail if one iteration is bigger then smallest distance between periodic point and Julia set
*/
double GiveTunedAR(const int iter_Max, const double complex c , const double AR_max){
fprintf(stdout, " GiveTunedAR\n");
complex double z = zcr; // initial point z0 = criical point
int iter;
double r;
//int i_Max = 1000;
for (iter=0; iter< iter_Max; ++iter ){
// period !!!
r = cabs(z-z2a);
fprintf(stdout, " i = %d z = %f %+f \t r = %f = %d * pixeWidth \n",iter , creal(z), cimag(z), r, (int) (r/PixelWidth));
z = fc(z,c); // forward iteration
}
r = cabs(z-z2a);
fprintf(stdout, " r = %f = %d * pixeWidth \n", r, (int) (r/PixelWidth));
if ( r> cabs(z-z2b))
{ fprintf(stdout, "one more forward iteration \n");
z = fc(z,c);
r = cabs(z-z2a);
}
if ( r > AR_max )
{
fprintf(stdout, " AR_max < r = %f = %d * pixeWidth \n", r, (int) (r/PixelWidth));
fprintf(stdout, " increase i_max\n" );
r = AR_max;} // manual check
return r;
}
// =====================
int IsPointInsideTrap1(complex double z){
if ( cabs2(z - z2a) < AR2 ) {return 1;} // circle around z2a
return 0; // outside
}
// =====================
int IsPointInsideTrap2(complex double z){
if ( cabs2(z - z2b) < AR2 ) {return 1;} // circle around z2b
return 0; // outside
}
int IsPointInsideTraps(complex double z){
if ( IsPointInsideTrap1(z) || IsPointInsideTrap2(z)) {return 1;} //
return 0; // outside
}
// =====================
int IsPixelInsideTraps(unsigned int ix, unsigned int iy){
complex double z = GiveZ (ix, iy);
if ( IsPointInsideTraps(z) ) {return 1;} //
return 0; // outside
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int
Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5
unsigned char
ComputeColorOfFatou (complex double z)
{
double r2;
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
r2 =cabs2(z);
if (r2 > ER2) // esaping = exterior
{
uExterior += 1;
return iColorOfExterior;
}
// solid color for each Fatou components
if ( IsPointInsideTrap1(z)) {
uInterior +=1;
if ( i % period )
{return iColorOfInterior1;}
else {return iColorOfInterior2;}
} // 50 + (i % 114); }
z = fc(z,C); // complex iteration f(z)=z^3 + c
}
uUnknown += 1;
return iColorOfUnknown;
}
// f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5
unsigned char
ComputeColorOfLSM (complex double z)
{
double r2;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
// complex iteration f(z)=z^3 + c
r2 =cabs2(z);
if (r2 > ER2) // esaping = exterior
{
uExterior += 1;
return 255- ((i*15) % 255);
}
// solid color for each Fatou components
if ( IsPointInsideTrap1(z)) {
uInterior +=1;
if ( i % 2 )
{return (i*9) % 255 ;}
else {return (i*10) % 255;}
} // 50 + (i % 114); }
z = fc(z,C);
}
uUnknown += 1;
return iColorOfUnknown;
}
/* ==================================================================================================
============================= Draw functions ===============================================================
=====================================================================================================
*/
unsigned char ComputeColor(FunctionTypeT FunctionType, complex double z){
unsigned char iColor;
switch(FunctionType){
case Fatou :{iColor = ComputeColorOfFatou(z); break;}
// case IntLSM :{iColor = ComputeColorOfIntLSM(z); break;}
// case ExtLSM :{iColor = ComputeColorOfExtLSM(z); break;}
case LSM :{iColor = ComputeColorOfLSM(z); break;}
/*
case DEM : {iColor = ComputeColorOfDEM(z); break;}
case Unknown : {iColor = ComputeColorOfUnknown(z); break;}
case BD : {iColor = ComputeColorOfBD(z); break;}
case MBD : {iColor = ComputeColorOfMBD(z); break;}
case SAC : {iColor = ComputeColorOfSAC(z); break;}
case DLD : {iColor = ComputeColorOfDLD(z); break;}
case ND : {iColor = ComputeColorOfND(z); break;}
case NP : {iColor = ComputeColorOfNP(z); break;}
case POT : {iColor = ComputeColorOfPOT(z); break;}
case Blend : {iColor = ComputeColorOfBlend(z); break;}
*/
default: {}
}
return iColor;
}
// plots raster point (ix,iy)
int DrawPoint ( unsigned char A[], FunctionTypeT FunctionType, int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColor(FunctionType, z);
A[i] = iColor ; //
return 0;
}
int
DrawImage ( unsigned char A[], FunctionTypeT FunctionType)
{
unsigned int ix, iy; // pixel coordinate
fprintf (stdout, "compute Fatou image LSM\n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPoint(A, FunctionType, ix, iy); //
}
return 0;
}
int IsInside (int x, int y, int xcenter, int ycenter, int r){
double dx = x- xcenter;
double dy = y - ycenter;
double d = sqrt(dx*dx+dy*dy);
if (d<r)
return 1;
return 0;
}
int PlotBigPoint(complex double z, unsigned char A[]){
unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
unsigned int i;
/* mark seed point by big pixel */
int iSide =2.0*iWidth/2000.0 ; /* half of width or height of big pixel */
int iY;
int iX;
for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){
for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){
if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) {
i= Give_i(iX,iY); /* index of _data array */
A[i]= 0; //255-A[i];
}}}
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int MarkAttractors (unsigned char A[])
{
fprintf (stdout, "mark attractors \n");
PlotBigPoint(z2a, A); // period 114 cycle
PlotBigPoint(z2b, A); // period 2 attracting cycle
return 0;
}
int MarkTraps(unsigned char A[]){
unsigned int ix, iy; // pixel coordinate
unsigned int i;
fprintf (stdout ,"Mark traps \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stdout, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix){
if (IsPixelInsideTraps(ix, iy)) {
i= Give_i(ix,iy); /* index of _data array */
A[i]= 255-A[i]; // inverse color
}}}
return 0;
}
int PlotPoint(complex double z, unsigned char A[]){
unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
unsigned int i = Give_i(ix,iy); /* index of _data array */
A[i]= 0; //255-A[i]; // Mark point with inveres color
return 0;
}
int DrawForwardOrbit(complex double z, unsigned long long int iMax, unsigned char A[] )
{
unsigned long long int i; /* nr of point of critical orbit */
printf("draw forward orbit \n");
PlotBigPoint(z, A);
/* forward orbit of critical point */
for (i=1;i<iMax ; ++i)
{
z = fc(z,C);
//if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
PlotBigPoint(z, A);
}
return 0;
}
int Test(){
complex double z = zcr;
int i;
int iMax = 100;
printf(" |z-z2a| = %f \t |z-z2b| = %f \n", cabs(z-z2a), cabs(z-z2b));
/* forward orbit of critical point */
for (i=1;i<iMax ; ++i)
{
z = fc(z,C);
printf("z = %f%+f \t |z-z2a| = %f \t |z-z2b| = %f \n", creal(z), cimag(z), cabs(z-z2a), cabs(z-z2b));
//if (cabs2(z - z2a) > 2.0) {return 1;} // escaping
}
return 0;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int
SaveArray2PGMFile (unsigned char A[], char * n, char *comment)
{
FILE *fp;
const unsigned int MaxColorComponentValue = 255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name[100]; /* name of file */
snprintf (name, sizeof name, "%s", n ); /* */
char *filename = strcat (name, ".pgm");
char long_comment[200];
sprintf (long_comment, "fc(z)=z^3+c %s", comment);
// save image array to the pgm file
fp = fopen (filename, "wb"); // create new file,give it a name and open it in binary mode
fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp); // write whole array with image data bytes to the file in one step
fclose (fp);
// info
if ( rSize == iSize)
{
printf ("File %s saved ", filename);
if (long_comment == NULL || strlen (long_comment) == 0)
printf ("\n");
else { printf (". Comment = %s \n", long_comment); }
}
else {printf("wrote %zu elements out of %llu requested\n", rSize, iSize);}
return 0;
}
int
PrintCInfo ()
{
printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is displayed in the console : export OMP_DISPLAY_ENV="TRUE"
printf ("__STDC__ = %d\n", __STDC__);
printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
printf ("c dialect = ");
switch (__STDC_VERSION__)
{ // the format YYYYMM
case 199409L:
printf ("C94\n");
break;
case 199901L:
printf ("C99\n");
break;
case 201112L:
printf ("C11\n");
break;
case 201710L:
printf ("C18\n");
break;
//default : /* Optional */
}
return 0;
}
int
PrintProgramInfo ()
{
// display info messages
printf ("Numerical approximation of Julia set for F(z,C) = z^3 + c) \n");
printf ("parameter C = ( %.16f ; %.16f ) \n", creal (C), cimag (C));
printf ("Period = %d orbit : \n", period);
printf ("\tparameter z2a = ( %.16f ; %.16f ) \n", creal (z2a), cimag (z2a));
printf ("\tparameter z2b = ( %.16f ; %.16f ) \n", creal (z2b), cimag (z2b));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %.16f \n", PixelWidth);
printf ("AR = %.16f = %f *PixelWidth = %f %% of ImageWidth \n", AR, AR / PixelWidth, AR / ZxMax - ZxMin);
printf("pixel counters\n");
printf ("\tuUnknown = %llu\n", uUnknown);
printf ("\tuExterior = %llu\n", uExterior);
printf ("\tuInterior = %llu\n", uInterior);
printf ("Sum of pixels = %llu\n", uInterior+uExterior + uUnknown);
printf ("all pixels of the array = iSize = %llu\n", iSize);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %d \n", IterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
return 0;
}
int SetPlane(complex double center, double radius, double a_ratio){
ZxMin = creal(center) - radius*a_ratio;
ZxMax = creal(center) + radius*a_ratio; //0.75;
ZyMin = cimag(center) - radius; // inv
ZyMax = cimag(center) + radius; //0.7;
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int
setup ()
{
fprintf (stderr, "setup start\n");
/* 2D array ranges */
iWidth = iHeight* DisplayAspectRatio ;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
SetPlane( center, radius, DisplayAspectRatio );
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ...
ER = 2.0; //
ER2 = ER*ER;
AR_max = 5*PixelWidth*iWidth/2000.0 ; // adjust first number
// GiveTunedAR(const int i_Max, const complex double zcr, const double c, const double zp){
AR = GiveTunedAR(200, C, AR_max);
AR2 = AR * AR;
//AR12 = AR/2.0;
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL)
{
fprintf (stderr, " Could not allocate memory");
return 1;
}
fprintf (stderr, " end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int
end ()
{
fprintf (stderr, " allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
PrintProgramInfo ();
PrintCInfo ();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int
main ()
{
setup ();
Test();
DrawImage (data, Fatou); // first find Fatou
SaveArray2PGMFile (data, "Fatou" , "Fatou ");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, "Fatou_b", "Boundaries of Fatou");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, "FatouAnd B", "Fatou with boundaries");
DrawImage (data, LSM); // first find Fatou
SaveArray2PGMFile (data, "LSM_9", "LSM");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, "LCM_9", "Level Curves Method = Boundaries of Level Sets");
DrawForwardOrbit(zcr, 100, edge);
SaveArray2PGMFile (edge, "LCM_cr", "LCM and critical orbit");
MarkTraps(data);
MarkAttractors(data);
SaveArray2PGMFile (data, "LSM_a", "Fatou with boundaries and traps; name = iWidth_IterMax_n");
/*
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, 1, "Boundaries of Fatou; name = iWidth_IterMax_n");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, 2, "Fatou with boundaries; name = iWidth_IterMax_n");
DrawFatouImageLSM (data, IterMax); // first find Fatou
SaveArray2PGMFile (data, 6, "Fatou LSM, name = iWidth_IterMax_n");
CopyBoundaries(edge,data);
SaveArray2PGMFile (data, 8, "LSM with boundaries; name = iWidth_IterMax_n");
*/
end ();
return 0;
}
bash source code
[edit]#!/bin/bash
# script file for BASH
# which bash
# save this file as d.sh
# chmod +x d.sh
# ./d.sh
# checked in https://www.shellcheck.net/
printf "make pgm files \n"
gcc d.c -lm -Wall -march=native -fopenmp
if [ $? -ne 0 ]
then
echo ERROR: compilation failed !!!!!!
exit 1
fi
export OMP_DISPLAY_ENV="TRUE"
printf "display OMP info \n"
time ./a.out > a.txt
export OMP_DISPLAY_ENV="FALSE"
printf "convert all pgm files to png using Image Magic convert \n"
# for all pgm files in this directory
for file in *.pgm ; do
# b is name of file without extension
b=$(basename "$file" .pgm)
# convert using ImageMagic
convert "${b}".pgm -resize 2000x2000 "${b}".png
echo "$file"
done
printf "delete all pgm files \n"
rm ./*.pgm
echo OK
# end
Makefile
[edit]all: chmod +x d.sh ./d.sh
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:43, 22 May 2021 | 2,000 × 2,000 (732 KB) | Soul windsurfer (talk | contribs) | level curves cross at critical point | |
13:54, 6 January 2021 | 2,000 × 2,000 (758 KB) | Soul windsurfer (talk | contribs) | better position of set | ||
05:48, 6 January 2021 | 2,000 × 2,000 (568 KB) | Soul windsurfer (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
File usage on other wikis
The following other wikis use this file:
- Usage on en.wikibooks.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
PNG file comment |
|
---|---|
File change date and time | 22:25, 22 May 2021 |