File:40750bp europe tjuly 2.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,472 × 976 pixels, file size: 972 KB, MIME type: image/png)

Captions

Captions

Temperature of July, Europe, 40750 years sgo

Summary

[edit]
Description
English: Temperature of July, Europe, 40750 years sgo
Date
Source Own work
Author Merikanto

This image is based on Armstrong et al 2019

The source of data to produce this image is

Armstrong et al. 2019: A simulated Northern Hemisphere land based climate dataset for the past 60,000 years.

Article https://www.nature.com/articles/s41597-019-0277-1#citeas

Data on CEDA archive

http://data.ceda.ac.uk/badc/deposited2018/HadCM3B_60Kyr_Climate/data/temp

http://dap.ceda.ac.uk/badc/deposited2018/HadCM3B_60Kyr_Climate/data/temp/bias_regrid_tas_40_42.5kyr.nc

40-40.25 kyr, item 15006

TY - JOUR AU - Armstrong, Edward AU - Hopcroft, Peter O. AU - Valdes, Paul J. PY - 2019 DA - 2019/11/07 TI - A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years JO - Scientific Data SP - 265 VL - 6 IS - 1 AB - We present a continuous land-based climate reconstruction dataset extending back 60 kyr from 0 BP (1950) at 0.5° resolution on a monthly timestep for 0°N to 90°N. It has been generated from 42 discrete snapshot simulations using the HadCM3B-M2.1 coupled general circulation model. We incorporate Dansgaard-Oeschger (DO) and Heinrich events to represent millennial scale variability, based on a temperature reconstruction from Greenland ice-cores, with a spatial fingerprint based on a freshwater hosing simulation with HadCM3B-M2.1. Interannual variability is also added and derived from the initial snapshot simulations. Model output has been downscaled to 0.5° resolution (using simple bilinear interpolation) and bias corrected. Here we present surface air temperature, precipitation, incoming shortwave energy, minimum monthly temperature, snow depth, wind chill and number of rainy days per month. This is one of the first open access climate datasets of this kind and can be used to study the impact of millennial to orbital-scale climate change on terrestrial greenhouse gas cycling, northern extra-tropical vegetation, and megaflora and megafauna population dynamics. SN - 2052-4463 UR - https://doi.org/10.1038/s41597-019-0277-1 DO - 10.1038/s41597-019-0277-1 ID - Armstrong2019 ER -

"R" code to downscale this image.

Uses topography files Etopo1, Tarasov GLAC1D dataset

Panoply visualization.

Code:


    1. Temperature "TS" netcdf downscaler
    2. Trace21ka Ccsm3 Hadcm3b 60kyr
    3. Glac1D Etopo1
    1. Language "R" 4.0.2
    2. v 1014.4
    3. 3.10.2021
    1. You need Etopo1, hadcm3b 6o kyr and Tarasov Glac 1d dataset to
  1. run this script
    1. !!!!!!! WARNING: you must have all Trace21ka TS files, thet you have searching
    2. if not, tracelocation3() not func ok and proge fails!
    3. WARNING2: Maybe inaccuracy due to inaccurate input orography data
    4. WARNING3: program do not make by default output under 3,5X3,75 degrees topo
    5. w/o accurate afterburner system
    6. WARNING4: plotting is under development stage, must visualize w/Panoply or other tools
    7. warnig2 Peltier ice sheet can cause problems

install_libraries=FALSE

if(install_libraries==TRUE) {

install.packages("raster")
install.packages("rgdal")
install.packages("sp")
install.packages("spatialEco")
install.packages("ncdf4")
install.packages("dissever")
install.packages("viridis")
install.packages("dplyr")
install.packages("lattice")
install.packages("RColorBrewer")
install.packages("pals")
install.packages("rgeos")
install.packages("sp")
install.packages("reshape2")
install.packages("data.table")
install.packages("stringr")
install.packages("rlist")
install.packages("pipeR")
install.packages("maptools")
install.packages("gdata", dependencies=TRUE)
install.packages("abind")
install.packages("Cairo")
install.packages("Rfast")

}


library(raster) library(rgdal) library(ncdf4) library(lattice) library(maptools) library(rgeos) library(spatialEco) library(dissever)

library(RColorBrewer) library(viridis) library(pals) library(data.table) library(stringr) library(rlist) library(pipeR) library(Rfast)

library(sp) library(reshape2)

library(dplyr)

  1. library(gdata)

library(abind)

library(Cairo)

    1. NOTE SET THESE
    1. set orografy creating off
  1. argreading=0 ## WARNING NOT IMPLEMENTED default 0
  2. kalk_distance=0 # for speed 0, if u not neet to calc distance
  3. kalk_tables=0 # suppress erroris from tables, id kalk_distance=0
    1. must be 1, if you create output foor certain year, first
    1. Control variables

arg_reading=1

orography_preprocess=1

    1. get dordogne srtm

get_srtm_data=0

    1. gtopo30

get_gtopo30_data=0

    1. output area type
    2. 0: normal local output
    3. 1: global output, according to Glac!D
    4. NOT OK 2: custom orography, local NOK
    1. acquire hadcm3b/ trace21ka temperature data, default 1

capture_temperature=1 capture_rainfall=0

    1. na fill method 0,1 or 2

hadcm3_60ka_seafill_method=1

    1. acquire hadcm3 60 kyr data
    2. Warning: you must edit procedure to acquire right dataser

capture_hadcm3_60ka_data=1

    1. acquire trace 26k data

capture_trace26k_data=0

    1. acquire glac1d elevation data,
    2. default
    3. 1 Tarasov glac1d (26 ka)
    4. 2 Peltier 1ce 6G-D (122 ka)

capture_elevation=1

    1. generate rain shadows, assume westerly wind by default

make_rain_shadows=0

calculate_distance=0

    1. either global_ds or normal_ds must set 1
    2. normal etopo1 area downscaling normal_ds=3
    1. 1: temperature downscaling: normal_ds=1
    2. 3: rainfall downscaling: normal_ds=3

normal_ds=1

    1. either global_ds or normal_ds must set 1
    2. global area downscaling to glac1d

global_ds=0

  1. ! afterburner accurate "kustomorofilee1.nc" downscaling, default 0
    1. need accurate orog file (GTOPO30 slice, SRTM etc.)

accurate_ds=0

  1. kustomorofilee1="./predata/europe30.nc"
    1. plotting is under alpha stage!

plot_result=0

    1. downscaling method from orography
    2. 0 delta, 1 spatialeco, 2 dissever, 3 temperature delta lapse rate 6,5 c/ 1 km
    3. method 2 slow

method_ds_oro=1

    1. downscaling method for temperature

method_ds_var=1

kustomorofilee1="./predata/dordogne.nc"

  1. kustomorofilee1="./predata/europe30.nc"
    1. year to render

fage=40750

  1. fage=52450
    1. fage=13000
    2. fage=12000


  1. fage=9000


    1. age in tarasov ice sheet

fage2=fage

    1. ane in defined, because tarasov extends 26ka only

fage2=14000

  1. fage=56000
    1. number of years to average, since "fage"

numyears=20

    1. month of year to render

fmonth=7

    1. sea level, below current: eq 120 means height of -120 to current
    2. not needed set by default, calculated from age w/ thisscript

sealevel=-70

out_text_1="TS" out_text_2="°C" out_text_3="Temperature of July, North East Asia, " out_text_3=paste0(out_text_3,toString(fage)) out_text_3=paste0(out_text_3, " years ago")

  1. out_text_1="Precipitation"
  2. out_text_2="mm"
  3. out_text_3="Annual precipitation, Europe, "
  4. out_text_3=paste0(out_text_3,toString(fage))
  5. out_text_3=paste0(out_text_3, " years ago")


    1. area to render, lon1, lon2 lat1 lat2 rectangle
    1. europe

lon1=-15.0 lon2=40.0 lat1=30.0 lat2=70.0


  1. beringia
  2. lon1=140
  3. lon2=240
  4. lat1=50.0
  5. lat2=80.0
  1. selerika
  2. lon1=140.0
  3. lon2=150.0
  4. lat1=60.0
  5. lat2=70.0


  1. east asia
  2. lon1=80
  3. lon2=200
  4. lat1=40.0
  5. lat2=80.0


    1. global
  1. klopaali1=1
  1. lon1=-180.0
  2. lon2=180.0
  3. lat1=-90.0
  4. lat2=90.0
    1. dordogne 1
  1. lon1=-2.0
  2. lon2=4.0
  3. lat1=42.0
  4. lat2=48.0
    1. dordogne 2
  1. lon1=0.0
  2. lon2=2.0
  3. lat1=44.0
  4. lat2=45.5
    1. dordogne 3
  1. lon1=-1.0
  2. lon2=2.0
  3. lat1=44.0
  4. lat2=45.5


filename1="KKK" tslocation1=-999 elevlocation1=-999

    1. calculate location in tarasov ice sheet data

elevlocation1<<-round( (fage2-26000)/100)*-1


variaabeli="TS" unitti="Celcius" lonkkunimi="Temperature" lonvar1="lon" latvar1="lat"

    1. hadcm3b 60ka files path
  1. hadbasepath<-"D:/varasto_iceagesimu"

hadbasepath<-"./predata"


hadmonths=1 hadoperaatio=1 ## 1: tex tjuly or precipjuly, 3 annual rain hadfilename="test.nc" hadbaseyear=0

  1. hadvariaabeli="tas"

hadvariaabeli="pr"

unitti="Celcius" hadlonkkunimi="Near-Surface Air Temperature" hadlonvar1="longitude" hadlatvar1="latitude" hadmonth=fmonth hadyear=fage hadyears=numyears

haditem=15006 ## !!! will override in many cases!

    1. non control vars

capture_hadcm3_temperature=0 capture_hadcm3_rainfall=0


    1. input data dirs
    2. etopo1 dir

predata="./predata/"

    1. Trace21ka TS dir

predata2="./predata2/"

dir.create("./data_processing") dir.create("./plotz")

  1. outpath11<-"./data_processing/area.nc"
  2. outpath12<-"./data_processing/area_neworog.nc"
    1. glac1D HDC file

inpath_tarasov1<-"./predata/TOPicemsk.GLACD26kN9894GE90227A6005GGrBgic.nc"

    1. peltier ice thickness 122 kyr

inpath_peltier1<-"./predata/IceT.I6F_C.131QB_VM5a_1deg.nc"

  1. outpath22<-"./data_processing/oroin.nc"
    1. ! grid-registreted etopo1
  2. inpath11<-"./predata/ETOPO1_Ice_g_gdal.grd"
    1. cell reg maybe inaccurate, but func w/dissever

inpath_etopo1<-"./predata/ETOPO1_Ice_c_gdal.grd" inpath_etopo2<- "./predata/etopo1_360.nc" data_processing="./data_processing/"

invarfname1<-"./data_processing/tempin.nc" inorofname2<-"./data_processing/area.nc" inorofname3<-"./data_processing/area_neworog.nc"

outorofname1<-"./data_processing/area_glacial.nc" outlandseamaskfname1<-"./data_processing/landsea_glacial.nc" outlandseamaskfname2<-"./data_processing/landsea_glacial.gif"


outvarfname1<-"./data_result/result.nc" outvarfname2<-"./data_result/result_land.nc"

outvarfname_accurate1<-"./data_result/accurate.nc"

inorofname360_1<-"./data_processing/oroin.nc" invarfname360_1<-"./data_processing/tempin.nc" inicefname360_1<-"./data_processing/maskin.nc"

inorofname180_1<-"./data_processing/oroin_180.nc" invarfname180_1<-"./data_processing/tempin_180.nc" inicefname180_1<-"./data_processing/maskin_180.nc"

smallrainame1<-"./data_processing/smallrain.nc"


  1. outname1<-"./data_processing/chelsa_current_annual_rain.nc"
  2. outname2<-"./data_processing/chelsa_lgm_ccsm4_annual_rain.nc"

outname3<-"./data_processing/etopo1.nc" outname4<-"./data_processing/lons.nc" outname5<-"./data_processing/lats.nc" outname6<-"./data_processing/distance.nc" outname7<-"./data_processing/slope.nc" outname8<-"./data_processing/aspect.nc" outname9<-"./data_processing/hillshade.nc" outname10<-"./data_processing/tpi.nc" outname11<-"./data_processing/westness.nc" outname12<-"./data_processing/blurelev.nc" outname13<-"./data_processing/windir.nc" outname14<-"./data_processing/etopo_big.nc"


plottauzdir1="./plotz/" plotfname0="result0.svg" plotfname1="./plotz/result1.svg"

resultdir1<-"./data_result/"

dir.create(data_processing) dir.create(plottauzdir1) dir.create(resultdir1)


    1. csv related variables, not yet used

smallrst="./data/small/" desticsv="./data/" destirst="./data/rst/" smalltemperaturepath<-"./data/small/small_temperature.nc" elevpath<-"./data/rst/elevation.nc" smallelevpath<-"./data/small/small_elevation.nc" distancepath<-"./data/rst/distance.nc" smalldistancepath<-"./data/small/small_distance.nc" latpath<-"./data/rst/latitude.nc" smalllatpath<-"./data/small/small_latitude.nc" lonpath<-"./data/rst/longitude.nc" smalllonpath<-"./data/small/small_longitude.nc"


    1. CODE BEGINS


exte1<- extent(lon1,lon2,lat1,lat2)

    1. global doordinates: pacific or europe centered
    2. rasnum 1: -180 - 180
    3. rasnum 2: 0 - 360


rasnum1=1

if(lon1>180)

  {

rasnum1=2;

  }
   
if(lon2>180)
   {

rasnum1=2; }




                    1. subroutines

sealevel_from_age<-function(inage) {

    1. agetable1<-c(60000,24000,22000,20000,18000,16000, 15000,14000,13000,12000,11000, 10000,8000,7000,6000 ,0)
    2. leveltable1<-c(-65,-125,-130,-125,-120,-115, -110,-80,-75,-65,-60, -45,-15,-10,-5 ,0 )

agetable1<-c(110000, 65000,60000,55000,50000,45000, 40000,37500, 35000, 30000, 24000,22000,20000,18000,16000, 15000,14000,13000,12000,11000, 10000,8000,7000,6000 ,0) leveltable1<-c(-40, -85,-75, -60,-70,-80,-75, -65, -80, -75, -125,-130,-125,-120,-115, -110,-80,-75,-65,-60, -45,-15,-10,-5 ,0 )

  1. plot(agetable1, leveltable1, main = "Sea level curve")

#points(approx(agetable1, leveltable1), col = 2, pch = "*")

# 	selev1=points(approx(agetable1, leveltable1), col = 2, pch = "*")

seali<<-approx(agetable1, leveltable1, xout=inage)


    sealevel<-as.numeric(seali)
   print("Calculated sea level ")
   print(seali)
   print(sealevel)


}



default_settings_on<-function() { print("Default settings on.") arg_reading <<-1 orography_preprocess<<-1 capture_temperature<<-1 capture_elevation<<-1 normal_ds<<-1 global_ds<<-0 accurate_ds<<-0 plot_result<<-1 }


delete_directories<-function() { print("Delete dirs") getwd() unlink(data_processing, recursive = TRUE) unlink(plottauzdir1, recursive = TRUE) unlink(resultdir1, recursive = TRUE)

}

read_argus<-function() {

if (arg_reading >0) { args = commandArgs(trailingOnly=TRUE)

if (length(args)==0) { ## stop("Not args. "=FALSE) print("usage like: rscript --vanilla tracs3.r 10000") # stop("Abort.") }

if (length(args)>0) {

print("Reading of argus done.")

eka<-args[1] toka<-args[2] fage<<-as.numeric(eka) print(fage)

delete_directories() default_settings_on() #fmonth=as.numeric(toka) } }

} ## argus



      1. MAIN PROGE


writeout<-function(oras, outn, varnamex, varunitx, longnamex) {

crs(oras) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(oras, filename=outn, overwrite=TRUE, format="CDF", varname=varnamex, varunit=varunitx, longname=longnamex, xname="lon", yname="lat")

}


preprocess_orography<-function() {

print("Processing orography, wait ...") rin1<-raster(inpath_etopo1)

rin1

x1 <- crop(rin1, extent(-180, 0, -90, 90)) x2 <- crop(rin1, extent(0, 180, -90, 90)) extent(x1) <- c(180, 360, -90, 90) rin2 <- merge(x1, x2)

rin2


    rasnum1=1
    
    if(lon1>180)
    {

rasnum1=2; }

      if(lon2>180)
    {

rasnum1=2; }

   if(rasnum1==1)

{ rout1<- crop(rin1, exte1) }

else { rout1<- crop(rin2, exte1) }


rout1

  1. plot(rout1)
   heightdelta=sealevel*-1
   

rout2=rout1+heightdelta

rout2[rout2 < 0] <- 0

plot(rout2, col=viridis(100))

  1. inorofname2<-"./data_processing/area.nc"
  2. inorofname3<-"./data_processing/area_neworog.nc"


crs(rout2) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(rout2, inorofname3, overwrite=TRUE, format="CDF", varname="Elev", varunit="meters",

 longname="Elevation", xname="lon", yname="lat")

crs(rin2) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(rin2, inpath_etopo2, overwrite=TRUE, format="CDF", varname="Elev", varunit="meters",

 longname="Elevation", xname="lon", yname="lat")


writeRaster(rout1, inorofname2, overwrite=TRUE, format="CDF", varname="Elev", varunit="meters",

 longname="Elevation", xname="lon", yname="lat")
  1. Pazka

# rout2 #plot(rout2)

}


generate_hadfilename<-function(hadbaspath1, yrr1, varr1) { #hadfilename="D:/varasto_iceagesimu/bias_regrid_tas_55_57.5kyr.nc" hadfilenamex1=hadbaspath1

hadfilenamex1<-paste0(hadfilenamex1,"/bias_regrid_") hadfilenamex1<-paste0(hadfilenamex1,varr1) hadfilenamex1<-paste0(hadfilenamex1,"_")

yrr1=yrr1-(2500/2)+1 a=yrr1/100 b=a c=round(b/25,0) d=(c*25)/10 e=d+2.5 hadbaseyear<<-d*1000

#print (b) #print (c) #print (d) #print (e)

hadfilenamex1<-paste0(hadfilenamex1,toString(d)) hadfilenamex1<-paste0(hadfilenamex1,"_") hadfilenamex1<-paste0(hadfilenamex1,toString(e)) hadfilenamex1<-paste0(hadfilenamex1,"kyr.nc") return(hadfilenamex1) }



    1. loadvar 3d


load_trace_var3d_3<-function(ivars1, lons1, lats1,variaabeli, unitti, age1, fage,numyears, fmonth1)

{


  1. ivars1 <- ncvar_get(input1, variaabeli)
  2. lats1 <- ncvar_get(input1, "lat")
  3. lons1 <- ncvar_get(input1, "lon")


print("Input variable processing ...")

  	varlocation1<<-((fage-age1)*12*-1)+fmonth1
  

if (numyears==1) { vaari1 <-ivars1[,,varlocation1] }

if (numyears>1) { ## vaari10<-ivars1[,,varlocation1]

vaari10=0 for (nn in 0:(numyears-1)) { vaari10 <-vaari10+ivars1[,,varlocation1+nn*12] }

vaari1=vaari10/numyears }


   if (variaabeli=="TS")
   {

vaari1<-vaari1-273.15

    }
    

vaari1<- apply(t(vaari1),2,rev)


rrvar1<-raster (vaari1)

rrvar1@extent<-extent(0, 360, -90, 90)

  print("Write ..")

crs(rrvar1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rrvar1, invarfname360_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")

   rrvar1_180<-rotate(rrvar1)


   rrvar1_180@extent<-extent(-180, 180, -90, 90)

plot(rrvar1_180, col=rainbow(120))

crs(rrvar1_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"


writeRaster(rrvar1_180, invarfname180_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")


#stop("Joo")

}


tracelocation3 <- function(dirra1, variaabeli, fage, numyears, fmonth) {

   aage2=fage-numyears
   aage1=fage
   

lista0<-list.files(path=dirra1,pattern="trace*", ignore.case=TRUE) pitu<-length(lista0)

  1. print(fage1,)

#print("Kup")

   #print (pitu)
   
#     lista0

fagek1=as.integer(aage1) fagek2=as.integer(aage2)


if(fagek2>fagek1) { huba=fagek1 fagek1=fagek2 fagek2=huba

}


mara1=-999 mara2=-999


for (n in 1:(pitu)) { row1<-lista0[n] jono1<-row1 #print (jono1)

     	s1<-gsub('\\.', '_', jono1[1])

s2<-gsub('\\-', '_', s1) s3<-gsub('BP', , s2)

q1 <-str_split(s3, "_")

      	sr1<-q11

age10<-as.integer(sr1[3])

		age20<-as.integer(sr1[4])
		
		age1<-age10[1]
		age2<-age20[1]
		                  
         if (fagek2==400) 

{ fagek2<-0 }

if(fagek1<age1)

    		{
			if(fagek1>age2)	

{ mara1<-n } }


if(fagek1==age1)

    		{

mara1<-n # break }

if(fagek2<age1) { if(fagek2>age2) { mara2<-n break } }


if(fagek2==age1)

    		{

mara2<-n }


  1. print (paste0(str(age1)," ",str(age2)))

}


print("Loop done")

print(mara1) print(mara2)

  1. Haista

ivars0=0 ivars1=0 mara=0 natta=0

agari1=0

    1. jn warning debug
for (mara in mara1:mara2)
  {

row1<-lista0[mara] print(row1)

jono1<-row1 s1<-gsub('\\.', '_', jono1[1]) s2<-gsub('\\-', '_', s1) s3<-gsub('BP', , s2) q1 <-str_split(s3, "_") sr1<-q11

age1<-as.numeric(sr1[3]) age2<-as.numeric(sr1[4])


# print (mara) filename1<-paste0(predata2, row1) print(filename1)


    	putin1 <- nc_open(filename1)
    	
    	

print(class(putin1))

    #     stop("k")
   #   ivars0<-0

ivars0 <- ncvar_get(putin1, variaabeli) lones1<- ncvar_get(putin1, lonvar1) latis1<- ncvar_get(putin1, latvar1)

if(natta>0) { ivars1<-abind(ivars1,ivars0,along=3) #ivars1=c(ivars1,ivars0) } else {

agari1<-as.numeric(age1) ivars1<-ivars0 }


       natta=natta+1
 
       nc_close(putin1)
  }	


elevlocation1<<-round( (fage-26000)/100)*-1

  class(ivars1)
  dim (ivars1)
  
  #	varlocation1<<-((fage-age1)*12*-1)+fmonth


    1. orig
  1. load_trace_var3d_3(ivars1, lons1, lats1,variaabeli, unitti,agari1, fage, numyears, fmonth )

load_trace_var3d_3(ivars1, lons1, lats1,variaabeli, unitti,agari1, fage ,numyears, fmonth)



   }



load_glac_elev<-function() {

number2<-elevlocation1


input2 <- nc_open(inpath_tarasov1)

class(input2)

#input2

print("INPUT GLAC1D ELEV")

elev <- ncvar_get(input2, "HDC") lats2 <- ncvar_get(input2, "YLATGLOBP5") lons2 <- ncvar_get(input2, "XLONGLOB1")

print("INPUT GLAC ELEV DONE") print (str(elev))

   print(number2)
   ## jn warning negative or not ??
   number3=number2*1

#print("kkk") elev00<-elev[,,number3] elev0<-matrix(elev00,360)

   #print("kkkk")

str(elev0)

#stop(-1)


elev1<-apply(t(elev0),2,rev)

#stop(-1)

#print("bbb")

elev1[elev1 <0.0] <- 0.0 #print("bbbb") rr2<-raster(elev1)

rr2@extent<-extent(0, 360, -90, 90)

plot(rr2, col=rainbow(64)) #stop(-1)



crs(rr2) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rr2, inorofname360_1, overwrite=TRUE, format="CDF", varname="Elev", varunit="Celcius", longname="Elevation", xname="lon", yname="lat")


   rr2_180<-rotate(rr2)
   
   rr2_180@extent<-extent(-180, 180, -90, 90)

plot(rr2_180, col=rainbow(120))

crs(rr2_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"


writeRaster(rr2_180, inorofname180_1, overwrite=TRUE, format="CDF", varname="Elev", varunit="Celcius", longname="Elevation", xname="lon", yname="lat") print("...") }

    1. load_var_nc


load_glac_icemask<-function() {

number2<-elevlocation1

  1. inpath22

input2 <- nc_open(inpath_tarasov1)

  1. class(input2)

#input2

print("INPUT GLAC1D ICEMASK")

elev <- ncvar_get(input2, "ICEM") lats2 <- ncvar_get(input2, "YLATGLOBP5") lons2 <- ncvar_get(input2, "XLONGLOB1")

print("INPUT GLAC ICEMASK DONE")

## jn warning nagative number3=number2*1

elev0<-elev[,,number3] elev1<-apply(t(elev0),2,rev) elev1[elev1 <0.0] <- 0.0

rr2<-raster(elev1)

rr2@extent<-extent(0, 360, -90, 90)


  1. plot(rr2, col=rainbow(64))

crs(rr2) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rr2, inicefname360_1, overwrite=TRUE, format="CDF", varname="Icem", varunit="percent", longname="Icemask", xname="lon", yname="lat")


   rr2_180<-rotate(rr2)
   
   rr2_180@extent<-extent(-180, 180, -90, 90)

plot(rr2_180, col=rainbow(120))

crs(rr2_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rr2_180, inicefname180_1, overwrite=TRUE, format="CDF", varname="Icem", varunit="percent", longname="Icemask", xname="lon", yname="lat")

}

    1. load_var_nc

load_peltier_elev<-function() { print("Input Peltier 6G 122 elevation data.")

input2 <- nc_open(inpath_peltier1)

ele <- ncvar_get(input2, "stgit") lats2 <- ncvar_get(input2, "Lat") lons2 <- ncvar_get(input2, "Lon") time2 <- ncvar_get(input2, "Time")

   possi2<- -999
   leenu2<-length(time2)
   hage<-(fage/1000)
     

for (n2 in 1:(leenu2) ) { taa2<-time2[n2]

if(hage==taa2) { possi2=n2 break }

if(hage>taa2) { possi2=n2-1 break }

}


elev0<-ele[,,possi2]

elev1<-apply(t(elev0),2,rev) elev1[elev1 <0.0] <- 0.0

rr2<-raster(elev1)

rr2@extent<-extent(0, 360, -90, 90)

plot(rr2, col=rainbow(64))

crs(rr2) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rr2, inorofname360_1, overwrite=TRUE, format="CDF", varname="Elev", varunit="Celcius", longname="Elevation", xname="lon", yname="lat")

   rr2_180<-rotate(rr2)
   
   rr2_180@extent<-extent(-180, 180, -90, 90)

plot(rr2_180, col=rainbow(120))

crs(rr2_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" 1 writeRaster(rr2_180, inorofname180_1, overwrite=TRUE, format="CDF", varname="Elev", varunit="Celcius", longname="Elevation", xname="lon", yname="lat")

## peltier ice6g elevation

}


nok_process_rasters<-function() { # WARNING!!!! vprocedure is NOT OK

## NOTE DISTANCE CALCULATION IS OFF SAKE FOR SPEED ## if you use distance, you must it below in script

re_in <- raster("./data_processing/oroin.nc") rt_in<-raster("./data_processing/tempin.nc")


re_in[re_in <0.0] <- 0.0

plot(re_in) plot(rt_in)

#extent(re_in)<-(0,360,-90,90)

big_sabluna<- raster(nrow=180, ncol=360)


#stop("TEST BRK")


extent(big_sabluna)<-c(0,360,-90,90) res(big_sabluna)<-c(1.0, 1.0)

#small_sabluna<-raster(nrow=48, ncol=96) #extent(small_sabluna)<-c(0, 360.000, -90, 90 ) #res(small_sabluna)<-c(3.75, 3,78947) #small_sabluna<-raster(nrow=50, ncol=100) #small_sabluna<-raster(nrow=5, ncol=10) small_sabluna<-raster(nrow=45, ncol=90)


extent(small_sabluna)<-c(0, 360.000, -90, 90 )


  1. extent(small_sabluna)<-c(-1.875, 358.125, -89.01354, 89.01354 )
  2. res(small_sabluna)<-c(3.75, 3.708898)


re_big <- resample(re_in,big_sabluna, method='bilinear') extent(re_big)<-c(0,360,-90,90) rt_big <- resample(rt_in,big_sabluna, method='bilinear')

  1. extent(re_big)<-c(0,360,-90,90)


re_small<-resample(re_in,small_sabluna, method='bilinear')

extent(re_small)<-c(0, 360, -90, 90 )

  1. res(re_small)<-c(3.75, 3.75)

rt_small <- resample(rt_in,small_sabluna, method='bilinear')

extent(rt_small)<-c(0,360,-90,90)

  1. res(rt_small)<-c(3.75, 3.75)


rlon_big <- rlat_big<- re_big xy <- coordinates(re_big) rlon_big[] <- xy[, 1]

  1. JN warning

rlat_big[] <- xy[, 2]

rlat_small<-resample(rlat_big,small_sabluna, method='bilinear') rlon_small<-resample(rlon_big,small_sabluna, method='bilinear')


  1. plot(rlat_small)


  1. re_big<-rotate(re_big)
  1. extent (re_big)
  1. plot(re_big)


  1. plot (rb_out)
  2. extent(rb_out)


  1. extent(rt_in)
  2. rt_in


crs(rt_small) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rt_small, smalltemperaturepath, overwrite=TRUE, format="CDF", varname="tempa", varunit="Units",

 longname="Temp", xname="lon", yname="lat")



  1. plot (rt_in)

plot (rt_small)

rt_in


rt_small


  1. re_big<-rotate(re_big)
  2. re_small<-rotate(re_small)
  3. rt_big<-rotate(rt_big)
  4. rt_small<-rotate(rt_small)
  5. rlon_big<-rotate(rlon_big)
  6. rlon_small<-rotate(rlon_small)
  7. rlat_big<-rotate(rlat_big)
  8. rlat_small<-rotate(rlat_small)


crs(re_big) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"


writeRaster(re_big, elevpath, overwrite=TRUE, format="CDF", varname="elev", varunit="Units",

 longname="Elevation", xname="lon", yname="lat")

crs(re_small) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(re_small,smallelevpath, overwrite=TRUE, format="CDF", varname="elev", varunit="Units",

 longname="Elevation", xname="lon", yname="lat")


crs(rlat_big) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rlat_big, latpath, overwrite=TRUE, format="CDF", varname="lata", varunit="Units",

 longname="Lata", xname="lon", yname="lat")

crs(rlat_small) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rlat_small,smalllatpath, overwrite=TRUE, format="CDF", varname="lata", varunit="Units",

 longname="Lata", xname="lon", yname="lat")


crs(rlon_big) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rlon_big, lonpath, overwrite=TRUE, format="CDF", varname="lata", varunit="Units",

 longname="Longa", xname="lon", yname="lat")

crs(rlon_small) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rlon_small, smalllonpath, overwrite=TRUE, format="CDF", varname="lata", varunit="Units",

 longname="Longa", xname="lon", yname="lat")

crs(rt_big) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rt_big, temperaturepath, overwrite=TRUE, format="CDF", varname="tempa", varunit="Units",

 longname="Tempa", xname="lon", yname="lat")

r_1=re_big r_1[r_1 > 0] <- NA r_1[r_1 < 1] <- 1


if(kalk_distance==1) { rdistance_big <- distance(r_1)

# meters to degrees

rdistance_big<-rdistance_big/111120

rdistance_small<-resample(rdistance_big,small_sabluna, method='bilinear')


rdistance_big<-rotate(rdistance_big) rdistance_small<-rotate(rdistance_small)


#plot(rdistance_big)

crs(rdistance_small) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rdistance_small, smalldistancepath, overwrite=TRUE, format="CDF", varname="distance", varunit="Units", longname="Distance", xname="lon", yname="lat")


crs(rdistance_big) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rdistance_big, distancepath, overwrite=TRUE, format="CDF", varname="distance", varunit="Units", longname="Distance", xname="lon", yname="lat") }

} ## process_rasters


nok_calculate_tables<-function() {

# WARNING procedure is NOT OK

print ("Tables.")

climdir="./data/" smalldir="./data/small/"

elevras_small<-raster("./data/small/small_elevation.nc") distras_small<-raster("./data/small/small_distance.nc") tempras_small<-raster("./data/small/small_temperature.nc")

#elevras_small #distras_small #tempras_small

temp_df<-as.data.frame(tempras_small, xy = TRUE) # jn warn

temp.df[is.na(temp.df)] <- 0.0 elev_df<-as.data.frame(elevras_small, xy = TRUE) dist_df<-as.data.frame(distras_small, xy = TRUE)

#temp_df

plot(tempras_small, col=rainbow(100)) #plot(elevras_small) #plot(distras_small)

small_stack <-stack(elevras_small, tempras_small, distras_small)

#plot(small_stack)

small_df<-data.frame( rasterToPoints( small_stack ) )

#plot(small_df)

## JN warning !!!!

small.df[is.na(small.df)] <- 0.0

#small_df

#colnames(small_df) <- c(library(reshape2) colnames(small_df) <- c("Lon","Lat","Elev", "AvgTemp","distCoast" )

#temp_df

#plot(tempras_small)

colnames(small_df) <- c("Lon","Lat","Elev", "AvgTemp","distCoast" )

small_df["StationID"] <- seq(1,nrow(small_df))+10

#small_df2<- small_df[c("Lat","Lon","Elev", "AvgTemp","distCoast" )]


#StationName,StationID,Lat,Lon,Elev,AvgTemp,distCoast


#colnames(small_df2 )

#head(small_df2,5)


small_df2 <- small_df[c("StationID","Lon","Lat","Elev", "AvgTemp","distCoast" )]

#small_df2


#len(small_df2.AvgTemp) #len(small_df2.Lon)

colnames(small_df2 )

head(small_df2,5)

sample_df=sample_n(small_df2, 600)

## JN warning !!!!

sample_df[is.na(sample_df)] <- 0.0

write.csv(small_df2,"./data/full.csv") write.csv(sample_df,"./data/sample.csv")

##rekt<-dplyr::filter(mag <5.5 & mag > 4.5)

#dplyr::filter(small_df2), lat>

d1<-filter(small_df, Lon >-15.0) d2<-filter(d1, Lon <40.0) d3<-filter(d2, Lat <70.0)

europedf<-filter(d3, Lat >30.0)

write.csv(europedf,"./data/europe.csv")

#plot(europedf)

}

    1. Downscaling utilities


downscaler <- function (coarse_rastera, fine_rastera, method) { ## methods: 0 delta, 1 spatialeco, 2 dissever, 3 temperature lapse 6.5 C/1 km lm


   print ("Downscaler()")			

coarse_raster<-coarse_rastera fine_raster<-fine_rastera p1<-fine_raster p2<-fine_raster


plot(fine_raster) plot(coarse_raster, col=viridis(200))


coarseoro<- resample(p1, coarse_raster) coarseoro_big<-resample(coarseoro, p1) orodelta<-(p1-coarseoro_big)


baset1 <- resample(coarse_raster, p1)

raster_stack <- stack(p1,p2)

min_iter <- 5 # Minimum number of iterations max_iter <- 10 # Maximum number of iterations p_train <- 0.1 # Subsampling of the initial data


	 if(method>9999)
	 {

method=2 }

## dissever run

   if(method==2)

{ oma_juttu <- dissever(coarse = coarse_raster, fine = raster_stack, method = "lm", p = p_train, min_iter = min_iter,max_iter = max_iter, verbose=1) orotemp<-oma_juttu$map }


## spatialeco downscale if(method==1) { oma_juttu2 <- raster.downscale(p1, coarse_raster) orotemp<-oma_juttu2$downscale }

    1. delta regression 1,1

if(method==0) {

orotemp<-orodelta

   	}
    1. delta regression by lapse rate

if(method==3) { orotemp<-orodelta*0.0065*-1

   	}


#biassi=4

#tempiso<-baset1+oma_juttu$map+biassi

coarseorotemp<- resample(orotemp, coarse_raster) coarseorotemp_big<-resample(coarseorotemp, p1)

orotempdelta<-orotemp-coarseorotemp_big

outtemp<-baset1+orotempdelta

  1. plot(outtemp, col=rev(rainbow(256)) )

outtempr<-rotate(outtemp)

plot(outtempr)

     return(outtemp)
}


downscale_orography<-function(method) {

  print("Orography ..")
    1. downscale orography
   oroko1<<-inorofname180_1;
   
   rasnumi1<<-rasnum1    
   
   "rasnum1"
   print(rasnumi1)
    
   
    if(rasnumi1==2)
    {

print ("ORO 0-360") oroko1<<-inorofname360_1; }


coarse_raster1<-raster(oroko1) fine_raster1<-raster(inorofname3)

if(capture_elevation==2) { print("Peltier test code") vali_raster1<-resample( fine_raster1, coarse_raster1) coarse_raster1<-coarse_raster1+vali_raster1 }


  1. coarseoro<- resample(p1, coarse_raster)
  kover_raster1<-resample(coarse_raster1, fine_raster1)
  kover_koeff1<-kover_raster1
  
  kover_koeff1[kover_koeff1>0]<- 1


   plot(fine_raster1)
   plot(coarse_raster1)
   names(fine_raster1)<-"Oroa"


## because europe lies between -15 ... 40, must rotate

    1. if(rasnumi1==1)
##    {
    1. "rotate oro"
    2. coarse_raster1<-rotate(coarse_raster1)
    3. }


    coarse_raster1[coarse_raster1 < 0] <- 0


plot(fine_raster1, col=viridis(100)) plot(coarse_raster1, col=viridis(100))


outras1<-downscaler(coarse_raster1, fine_raster1,method)


   outras1[outras1<1]<- 0

#"Oro ds debug 1"

  1. names(outras1)<-"Oro"


  1. sabluna1<-raster(inorofname3)


 #"sabluna1"
#  plot(sabluna1)
  
#  sabluna1[sabluna1<0]<- 0
  1. sabluna1[sabluna1>0]<- 1
  1. outras1<-outras1*sabluna1


#  outras1<-outras1*kover_koeff1
  
#  plot(outras1)
  
 
    1. elevenaame1<-"./data_processing/area_neworog.nc"
  1. elevenaame2<-"./data_processing/area_glacial.nc"


plot(outras1, col=rev(plasma(256)))

writeRaster(outras1, outorofname1, overwrite=TRUE, format="CDF", varname="Oro", varunit="meters", longname="Orogr", xname="lon", yname="lat")

   outras2<-outras1
   
 
   outras2[outras2[]<=0.0] <- 0 
   outras2[outras2[]>0.0] <- 1.0 
 	plot(outras2, col=rev(plasma(256)))
 	
 	writeRaster(outras2, outlandseamaskfname1, overwrite=TRUE, format="CDF", varname="Land", varunit="unit", 

longname="Land", xname="lon", yname="lat")

  1. writeRaster(outras2, outlandseamaskfname2, overwrite=TRUE, format="CDF", varname="Land", varunit="unit",
  2. longname="Land", xname="lon", yname="lat")

}


downscale_temperature<-function(method) {

    1. downscale temperature
   print("DS of variable...")
   
    rasnumi1<<-rasnum1   

varoko1<<-invarfname360_1;

if(rasnumi1==1) {

  1. coarse_raster2<-rotate(coarse_raster2)
        varoko1<<-invarfname180_1;

}

coarse_raster2<-raster(varoko1)

fine_raster2<-raster(outorofname1)



print("TS rsaters")

#coarse_raster2

#fine_raster2


  1. if(klopaali1==1)
  2. {
  3. fine_raster2=rotate(fine_raster2)
  4. }


plot(fine_raster2)

   plot(coarse_raster2)

#fine_raster2<-outras1

  1. fine_raster2<-raster(inorofname2)
    1. if(rasnumi1==1)
##    {
    1. coarse_raster2<-rotate(coarse_raster2)
    2. }

plot(fine_raster2, col=viridis(100)) plot(coarse_raster2, col=viridis(100) )

outras2<-downscaler(coarse_raster2, fine_raster2,method)

  1. names(outras1)<-"TS"


plot(outras2, col=rev(rainbow(256)))

  1. writeRaster(outras2, filename='./outdata/result.nc', format="CDF", overwrite=TRUE)
  1. out_text_1="TS"
  2. out_text_2="oC"
  3. out_text_3="Temperature"


writeout(outras2,outvarfname1,out_text_1, out_text_2, out_text_3)

mask1<-raster(outlandseamaskfname1) outras3<-outras2 outras3<-outras3*mask1 writeout(outras3,outvarfname2,out_text_1, out_text_2, out_text_3)


#writeRaster(outras3,outvarfname2 , overwrite=TRUE, format="GIF", varname="TS", varunit="Celcius", #longname="Temperature", xname="lon", yname="lat")

}


normal_ts_downscale<-function()

     {

## normal ## methods 0 delta, 1 spatialeco 2 dissever 3 tempdelta


print("Normal etopo1 ds. Orography ...")


  if(capture_elevation==2)
  {	

# force method to 0 because of peltier topography downscale_orography(0)

  }
  else
  {	

downscale_orography(method_ds_oro)

  }


print("Temperature ...") downscale_temperature(method_ds_var)


    1. spatialeco
    2. downscale_orography(1)
    3. downscale_temperature(1)
    1. delta
    1. downscale_orography(0)
  1. downscale_temperature(3)


}


world_ts_downscale<-function()

     {

rasnum1<<- 2 klopaali1<<-1

inorofname1<<-"./data_processing/oroin.nc" invarfname1<<-"./data_processing/tempin.nc"


    1. inorofname1<-"./data/rst/elevation.nc"
    2. invarfname1<-"./data/small/small_temperature.nc"

## normal print("WORLD DS") # downscale_orography(2) ## WORLD DS #outorofname1<<-"./data/rst/elevation.nc" outorofname1<<-"./data_processing/oroin.nc" # outorofname2<<-"./data_processing/oroin.nc"

downscale_temperature(3) }


custom_ts_downscale_1<-function(orofilee1, tempfilee1)

     {

print("Custom ds type 1.") print(orofilee1) print(tempfilee1)

rasnum1<<- 1

    coarse_raster=raster(tempfilee1)
    fine_raster=raster(orofilee1)
   	  
    method=3

outras<-downscaler(coarse_raster, fine_raster,method)

plot(outras, col=rev(rainbow(256)))

writeRaster(outras, "./data_result/accurate.nc", overwrite=TRUE, format="CDF", varname="TS", varunit="Celcius", longname="Temperature", xname="lon", yname="lat")

}



plottaus1<-function(zvarnaame1, outfilenaame1) {

  1. elevenaame0<-"./data_processing/area_neworog.nc"

elevenaame1<-"./data_processing/area_glacial.nc"

   while (dev.cur()>1) dev.off()

grayscale_colors <- gray.colors(100,start = 0.0,end = 1.0,gamma = 2.2,alpha = NULL)

relev1<-raster(elevenaame1)

razteri1<-raster(zvarnaame1)

  1. plot(relev1)


aage<<-fage

ram1<-relev1

maintitle1<-paste0("Temperature of July, ",toString(aage), " BP") subtitle1<-"Trace21ka CCSM3 downscaled" xlab1<-"Lon" ylab1<-"Lat"


print (maintitle1)

limx1<- -15 limx2<-45

   limy1<-35
   limy2<-65	
      
   limitx1<-c(limx1, limx2)
   limity1<-c(limy1, limy2)
   
   templevs1<-c(-15,-10,-5,0,5,10,15,20,25,30,35)
   ltemp1<-length(templevs1)

tempmin1<-templevs1[0]

   tempmax1<-templevs1[ltemp1-1]

print(tempmin1) print(tempmax1)

x1 <- rasterToContour(razteri1, levels=templevs1)

    1. lev1 <- seq(tempmin1,tempmax1, by=5)
 lev1=seq(-15,35,5)

class(x1) ek1<-rasterToContour(ram1)

svg(filename="out.svg", width=12, height=10, pointsize=20)

plot( razteri1, main=maintitle1, sub=subtitle1, xlab=xlab1, ylab=ylab1, xlim=limitx1, ylim=limity1, breaks=templevs1, col=rev(rainbow(ltemp1)) )


#  plot(x1,xlim=c( -15, 50 ), ylim=c( 30, 60 ), alpha=0.5,add=TRUE)

plot(ram1, xlim=limitx1, ylim=limity1 , zlim=c(0,1), breaks=c(-1,0,1), col=viridis(2) , legend=FALSE, add=TRUE)


  1. plot(ek1, add=TRUE, legend=FALSE)

dev.off() }


fill.na <- function(x) { width1<-67

 center = 0.5 + (width1*width1/2) 
 if( is.na(x)[center] ) {
   return( round(mean(x, na.rm=TRUE),0) )
 } else {
   return( round(x[center],0) )
 }

}

get_europe_gtopo30<-function() { # france #ext1 <- extent(-4,8, 39, 51) #dordogne #ext1 <- extent(-2,4,42 , 48)

#europe ext1 <- extent(-15,40,30,70)

outname1<-"./predata/europe30.nc"

r1<-raster("./predata/gt30w020n90.tif")# r2<-raster("./predata/gt30e020n90.tif") # r4<-raster("./predata/gt30w020n40.tif") # r3<-raster("./predata/gt30e020n40.tif")

#plot(r1)

mosaik1 <- merge(r1,r2,r3,r4)


kropped1<-crop(mosaik1, ext1)

#plot(kropped1)

crs(kropped1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(kropped1, filename=outname1, format="CDF", overwrite=TRUE) }



load_hadcm3_slice <- function(hadfilename, hadvariaabeli, haditem) { print("Trying to load hadcm3 filee ")

## varlocation1<<-((fage-age1)*12*-1)+fmonth1

varlocation1=haditem

print(hadfilename)

hadcount=1


    	putin1 <- nc_open(hadfilename)
    	  		

print(class(putin1))

lones1<- ncvar_get(putin1, hadlonvar1) latis1<- ncvar_get(putin1, hadlatvar1) t <- ncvar_get(putin1, "time")

lenlones1<-length(lones1) lenlatis1<-length(latis1)

vaari0<- ncvar_get(putin1,hadvariaabeli, start=c(1,1,haditem), count=c(lenlones1,lenlatis1,1) )

nc_close(putin1)

print(dim(vaari0))

padding1 = matrix(0,lenlones1,180)

vaari1<-cbind(padding1,vaari0) #vaari1<-vaari0

print(dim(vaari1))


  vaari1<- apply(t(vaari1),2,rev)
  


rrvar00<-raster (vaari1)

rrvar00@extent<-extent(0, 360, -90, 90)

width1 = 67 rrvar1<- focal(rrvar00, w = matrix(1,width1,width1), fun = fill.na,

           pad = TRUE, na.rm = FALSE)
           
           

summary(getValues(rrvar1))


plot(rrvar1, col=rainbow(120))

  print("invarfname:")
  print(invarfname360_1)
  
  print("Write hadcm3 file ..")

crs(rrvar1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rrvar1, invarfname360_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")

   rrvar1_180<-rotate(rrvar1)


   rrvar1_180@extent<-extent(-180, 180, -90, 90)

plot(rrvar1_180, col=rainbow(120))

crs(rrvar1_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"


writeRaster(rrvar1_180, invarfname180_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")


  # print("Test break")
   
  # stop()


   }



load_hadcm3_year_month <- function(hadfilename, hadvariaabeli, hadyear, hadmonth, hadbeginyear) {

hadyeardelta=hadyear-hadbeginyear haddelta=hadyeardelta*12+hadmonth haditem=30001-haddelta

load_hadcm3_slice(hadfilename, hadvariaabeli, haditem) }


load_average_hadcm3_years_months <- function(hadfilename, hadvariaabeli,hadbeginyear, hadyear, hadmonth, hadyears, hadmonths, operaatio, metoden1) {

## operaatio==0: sum ## operaatio==1: averege of data matrices

print ("Loading many HADCM3 slices.") print(hadfilename)


	putin1 <- nc_open(hadfilename)
    	  		          

lones1<- ncvar_get(putin1, hadlonvar1) latis1<- ncvar_get(putin1, hadlatvar1) t <- ncvar_get(putin1, "time") lenlones1<-length(lones1) lenlatis1<-length(latis1)

plastic1<-matrix(0,lenlones1,lenlatis1)

kohtia=0

hadyearend=hadyear+hadyears hadmonthend=hadmonth+hadmonths

#print ("Hadyear") #print (hadyear) #print (hadyearend) #print (hadmonth) #print (hadmonthend)


hadyeardelta1=hadyear-hadbeginyear haddelta1=hadyeardelta1*12 haditem1=30001-haddelta1

hadpususize1=hadyears*12

#print ("Haddeltas ") #print( hadyeardelta1) #print(haddelta1) #print(haditem1)


print("Get had data ...")

hadpusu1<-ncvar_get(putin1,hadvariaabeli, start=c(1,1,haditem1), count=c(lenlones1,lenlatis1,hadpususize1) )

   nc_close(putin1)	 

#print (hadpusu1[7])


hadex1=0

   ammax=hadyears-1
   kammax=hadmonth+hadmonths-1


#print("Extract haddata:")

hadpusupitu1=length(hadpusu1)

#print (hadpusupitu1) #print (hadpususize1)

#print (ammax) #print (kammax) #print (hadmonth)

#print ("luup")

vuozia1=0

for (m in (1:ammax) ) { #print("R") for (n in (hadmonth:kammax) ) { #print(".")

#print(n)

hadex1=m*12+n

# print (hadex1) vaari0<-hadpusu1[,,hadex1] plastic1<-plastic1+vaari0

kohtia=kohtia+1

} vuozia1=vuozia1+1 }

print("Kohtia:") print(kohtia) print("Vuozia1:") print (vuozia1) print("Operaatio:") print(operaatio)


if(operaatio==0) { ## operaatio 0, sum ## one year precip print("sum") vaari3<-plastic1 }

if(operaatio==1) { print("one month, many years") ## one month, many years vaari3<-(plastic1/kohtia) # JN WARNING koe }

if(operaatio==2) { print("annualaverage, one year") ## annual #print("Operaatio 3: temperature annual") vaari3<-plastic1/12 }

if(operaatio==3) { print("annual sum, many years") #print("Operaatio 3: rainfall annual") vaari3<-plastic1/vuozia1 }


#  plot(vaari3)


vaari4<-vaari3 vaari5<-vaari3 vaari6<-vaari3 vaari7<-vaari3

   dima1<-dim(vaari3)
   w1=dima1[1]
   h1=dima1[2]
   print (w1)
   print (h1)
  
  if(metoden1==2)
  { 
   

for (ix in (1:w1) )

{ beg1=1 viksu1=-1 for (iy in (1:h1) )

{ piksu1=vaari3[ix,iy]

if(is.na(piksu1)) {

if(beg1==0) { vaari4[ix,iy]=viksu1 vaari3[ix,iy]=1 } else { vaari4[ix,iy]=piksu1

}


} else { beg1=0 viksu1=piksu1 beg1=0 }


}


beg1=1 viksu1=-1 for (iy in seq(h1, 1, by=-1 ) ) {

piksu1=vaari3[ix,iy]

if(is.na(piksu1)) {

vaari4[ix,iy]=viksu1

} else ## ei na { beg1=0 viksu1=piksu1 beg1=0 }


} }


                          1. sekond
  				for (iy in (1:h1) )
   


{ beg1=1 viksu1=-1 for (ix in (1:w1) )

{ piksu1=vaari5[ix,iy]

if(is.na(piksu1)) {

if(beg1==0) { vaari6[ix,iy]=viksu1 vaari5[ix,iy]=1 } else { vaari6[ix,iy]=piksu1

}


} else { beg1=0 viksu1=piksu1 beg1=0 }


}


beg1=1 viksu1=-1 for (ix in seq(w1, 1, by=-1 ) ) {

piksu1=vaari5[ix,iy]

if(is.na(piksu1)) {

vaari6[ix,iy]=viksu1

} else ## ei na { beg1=0 viksu1=piksu1 beg1=0 }


} }

vaari7<-(vaari4+vaari6)/2 }



  1. plot(vaari3)
   #print(dim(vaari3))
   padding1 = matrix(0,lenlones1,180)
   vaari1<-cbind(padding1,vaari7)  
   #vaari1<-vaari0
   #print(dim(vaari1))
   vaari1<- apply(t(vaari1),2,rev)
  

rrvar00<-raster (vaari1)

rrvar00@extent<-extent(0, 360, -90, 90)


    1. fill nas with nearest non-na

if(metoden1==1) { ## orig 67

	width1 = 67
	##width1=157

rrvar1<- focal(rrvar00, w = matrix(1,width1,width1), fun = fill.na,

           pad = TRUE, na.rm = FALSE)
           
    }       


if(metoden1==0) { rrvar0<-rrvar00 rrvar1<-rrvar0 }


    1. summary(getValues(rrvar1))



plot(rrvar1, col=rainbow(8))

  print("invarfname:")
  print(invarfname360_1)
  
  print("Write hadcm3 file ..")

crs(rrvar1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

writeRaster(rrvar1, invarfname360_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")

   rrvar1_180<-rotate(rrvar1)


   rrvar1_180@extent<-extent(-180, 180, -90, 90)

plot(rrvar1_180, col=rainbow(120))

crs(rrvar1_180) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"


writeRaster(rrvar1_180, invarfname180_1, overwrite=TRUE, format="CDF", varname=variaabeli, varunit=unitti, longname=lonkkunimi, xname="lon", yname="lat")


  print("HadCM3 data file loaded .")	


}


  1. TPI for different neighborhood size:

tpiw <- function(x, w=15) { m <- matrix(1/(w^2-1), nc=w, nr=w) m[ceiling(0.5 * length(m))] <- 0 f <- focal(x, m) x - f }


    1. generate rain shadows, assume westerly wind by default

generate_rain_shadows<-function() { ## params

hillshade_slope=2 hillshade_aspect=260

## direction of global, assumed wind tirektion=(260*6.28)/360

orography1<-raster(outorofname1)


## copy raster windir<-orography1 windir<-windir*0

windir<-windir+tirektion

latras <- lonras <- orography1 xy <- coordinates(orography1) lonras[] <- xy[, 1] latras[] <- xy[, 2]

#print("write windir ...")

crs(windir) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(windir, filename=outname13, overwrite=TRUE, format="CDF", varname="Windir", varunit="radins", longname="Windir", xname="lon", yname="lat")

#print(" write lonras") crs(lonras) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(lonras, filename=outname4, overwrite=TRUE, format="CDF", varname="Lonx", varunit="mm", longname="Lonx", xname="lon", yname="lat")

crs(latras) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(latras, filename=outname5, overwrite=TRUE, format="CDF", varname="Laty", varunit="mm", longname="Laty", xname="lon", yname="lat")


slope <- terrain(orography1, opt='slope') aspect <- terrain(orography1, opt='aspect') hill <- hillShade(slope, aspect, hillshade_slope, hillshade_aspect) #plot(hill, col=grey(0:100/100), legend=FALSE, main='France')


tpi5 <- tpiw(orography1, w=15)


crs(slope) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(slope, filename=outname7, overwrite=TRUE, format="CDF", varname="Slope", varunit="mm", longname="Slope", xname="lon", yname="lat")

crs(aspect) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(aspect, filename=outname8, overwrite=TRUE, format="CDF", varname="Aspect", varunit="mm", longname="Aspect", xname="lon", yname="lat")

crs(hill) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(hill, filename=outname9, overwrite=TRUE, format="CDF", varname="Hillshade", varunit="m", longname="Hillshade", xname="lon", yname="lat")

crs(tpi5) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(tpi5, filename=outname10, overwrite=TRUE, format="CDF", varname="tp15", varunit="m", longname="tpi5", xname="lon", yname="lat")

#etopo=rout3 #etopo[etopo < 1] <- 0 #etopo[is.na(etopo[])] <- 0


blurelev1 <- focal(orography1, w=matrix(1,nrow=7,ncol=7), fun=mean, pad=TRUE, na.rm = TRUE)

crs(blurelev1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(blurelev1, filename=outname12, overwrite=TRUE, format="CDF", varname="Blurelev", varunit="m", longname="Blurelev", xname="lon", yname="lat")

#plot(rasa1) if(calculate_distance==1) { cacheras1<-orography1

cacheras1[cacheras1 > 1] <- NA cacheras1[cacheras1 < 0] <- 1

print( "Calculating distance. Maybe very slooow. \n Wait ...") distrasa1 <- distance(cacheras1) crs(distrasa1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(distrasa1, filename=outname6, overwrite=TRUE, format="CDF", varname="Dist", varunit="m", longname="Distance", xname="lon", yname="lat") }


}


downscale_dissever <- function (coarse_rastera, fine_stack, dismethod, samplerate) {

   print ("Dissever()")		
   names(fine_stack)
       
     	

coarse_raster<-coarse_rastera

   p1<-fine_stack$Elevation


  1. plot(p1)
  1. return(0)

coarseoro<- resample(p1, coarse_raster) coarseoro_big<-resample(coarseoro, p1) orodelta<-(p1-coarseoro_big)


baset1 <- resample(coarse_raster, p1)

raster_stack <- fine_stack

min_iter <- 3 # Minimum number of iterations max_iter <- 7 # Maximum number of iterations p_train <- samplerate # Subsampling of the initial data

    print("Dissever() begin ...")

oma_juttu <- dissever(coarse = coarse_raster, fine = raster_stack, method = dismethod, p = p_train, min_iter = min_iter,max_iter = max_iter, verbose=1) print("Dissever() end.")

orotemp<-oma_juttu$map

#tempiso<-baset1+oma_juttu$map+biassi

coarseorotemp<- resample(orotemp, coarse_raster) coarseorotemp_big<-resample(coarseorotemp, p1)

orotempdelta<-orotemp-coarseorotemp_big

outtemp<-baset1+orotempdelta

  1. plot(outtemp, col=rev(rainbow(256)) )
  1. outtempr<-rotate(outtemp)

#plot(outtempr)

     return(outtemp)
}


downscale_rainfall<-function() { print("Downscaling rainfall ...")

#outname3<-"./data_processing/etopo1.nc" #outname4<-"./data_processing/lons.nc" #outname5<-"./data_processing/lats.nc" #outname6<-"./data_processing/distance.nc" #outname7<-"./data_processing/slope.nc" #outname8<-"./data_processing/aspect.nc" #outname9<-"./data_processing/hillshade.nc" #outname10<-"./data_processing/tpi.nc" #outnam44e11<-"./data_processing/westness.nc" #outname12<-"./data_processing/blurelev.nc" #outname13<-"./data_processing/windir.nc" #outname14<-"./data_processing/etopo_big.nc"

etopo0<<-raster(outorofname1)

  	aspect0<<-raster(outname8)

tpi0<<-raster(outname10) lonx0<<-raster(outname4) hillshade0<<-raster(outname9) slope0<<-raster(outname7) windir0<<-raster(outname13) bluretopo0<<-raster(outname12) latx0<<-raster(outname5)

#print("Krop smallrain")

ext1<-extent(etopo0)

#print(ext1)

smallrain00<-raster(invarfname180_1)

smallrain0<-crop(smallrain00, ext1)

   plot(smallrain0, col=rev(viridis(100)))	


   aspect1<<-cos(aspect0)

names(aspect1)<<-"Aspect_Cos"

etopo1<<-etopo0 etopo1[etopo1 < 1] <- 1 etopo1<<-log(etopo1) names(etopo1)<<-"Elevation"

landmask0<<-etopo0 landmask0[landmask0 > 0] <<- 1 landmask0[landmask0 < 1] <<- NA

   plot(landmask0)

if(calculate_distance==1) { distans1<<-distans0 distans1[distans1 < 1] <<- 1 distans1<<-log(1/distans1) names(distans1)<<-"Distance" }

lonx1<<-lonx0 lonx1[lonx1 < 1] <<- 1 lonx1<<-log(1/lonx1) names(lonx1)<<-"Lonx"

bhillshade_slope=6 bhillshade_aspect=260

#aspect1=cos(aspect0-windir0)

bslope <<- terrain(bluretopo0, opt='slope') baspect <<- terrain(bluretopo0, opt='aspect')

bhill <<- hillShade(bslope, baspect, bhillshade_slope, bhillshade_aspect)

## windrose w/zulu basis bhill2 <<- ( hillShade(bslope, baspect, bhillshade_slope, bhillshade_aspect)+ hillShade(bslope, baspect, bhillshade_slope, (bhillshade_aspect-20))+ hillShade(bslope, baspect, bhillshade_slope, (bhillshade_aspect+20))+ hillShade(bslope, baspect, bhillshade_slope*2, (bhillshade_aspect-40))+ hillShade(bslope, baspect, bhillshade_slope*2, (bhillshade_aspect+40))+ hillShade(bslope, baspect, 85, (bhillshade_aspect+180)) )/6


bhillshade1<<-bhill halli1<<-(bhillshade1-minValue(bhillshade1))/(maxValue(bhillshade1)-minValue(bhillshade1)) ## zulu basis rainfall correction


#halli2<-(halli1*0.2)+0.9 #halli2=halli1*0.01

  1. halli2<<-2+log((0.1+halli1)*10)
   halli2<<-halli1*0.5+0.75

#plot(halli2) names(halli2)<<-"HillshadeX" halli22<<-halli2 names(halli2)<<-"HillshadeX2"

#halli3=log(1+halli2*100) halli3<<-halli2*-1-2

names(halli3)<<-"HSY"

#baspect2=cos(baspect-4.55)*0.05+1.0 #plot(baspect2)

baspect3a<<-((cos(baspect-4.6)+cos(baspect-5.3)+cos(baspect-3.5))/3) baspect2<<-(baspect3a*0.5)+1.0

 #  plot(halli2, col=rev(viridis(100)))
   
 #  plot(baspect2, col=rev(parula(20)))


bhak1<<-baspect2*halli2

   ehak1<<-etopo0*halli2
   ebk1<<-etopo0*baspect2
   ehk1<<-etopo0*bhill
   esk1<<-etopo0*bslope      
   ebhk1<<-etopo0*bhill*baspect2  ##
   ebshk1<<-etopo0*bhill*baspect2*bslope  ## no hyvä
 #  plot(bhak1, col=rev(viridis(100)))
 #  plot(ehak1, col=rev(viridis(100)))
 #  plot(ebk1, col=rev(viridis(100)))
 #  plot(ehk1, col=rev(viridis(100)))
 #  plot(esk1, col=rev(viridis(100)))
 #  plot(ebhk1, col=rev(parula(100))) ## hyvä?
 #        plot(ebshk1, col=rev(viridis(100))) ## no hyvä


names(baspect2)<<-"AspectX" names(ebhk1)<<-"HillShadeAspectX"

#hill <- hillShade(blurslope, bluraspect, hillshade_slope, hillshade_aspect)

tpix1 <<- tpiw(etopo0, w=5)

names(tpix1)<<-"TPIX5"

tpix2 <<- tpiw(etopo0, w=11)

names(tpix2)<<-"TPIX11"

tpix3 <<- tpiw(etopo0, w=15)

names(tpix3)<<-"TPIX15"

tpix4 <<- tpiw(etopo0, w=21)

names(tpix4)<<-"TPIX21"

  1. plot(tpix4)

tpix5 <<- tpiw(etopo0, w=51)

names(tpix5)<<-"TPIX51"

plot(tpix5, col=inferno(50) )

tri1<<-terrain(etopo0, opt="TRI")

names(tri1)<<-"TPI1"

plot(tri1, col=viridis(100))


    roughness1<<-terrain(etopo0, opt="roughness")

names(roughness1)<<-"ROUGHNESS1"

plot(roughness1)


    flowdir1<<-terrain(etopo0, opt="flowdir")

names(flowdir1)<<-"FLOWDIR1"

plot(flowdir1)


  dsobject=1

if(dsobject==1) { print("DS 1")

     # preprocess_rasters=1



       plot(etopo0)
         

g0<-etopo0 g1<-etopo0


#g1<-etopo0*tpix1 #g2<-etopo0*tpix2 #g3<-etopo0*tpix3 #g4<-etopo0*baspect2 g5<-etopo0*halli2 g6<-sin(aspect0)

names(g0)<-"Elevation" names(g1)<-"ElevationX1" #names(g2)<-"ElevationX2" #names(g3)<-"ElevationX3" #names(g4)<-"ElevationX4" #names(g5)<-"ElevationX5" #names(g6)<-"ElevationX6"

       ##rastafari1<-stack(etopo0, icemask_big0, ebhk1) ## kohtal
       # rastafari1<-stack(etopo0, ebhk1) ## kohtal
        rastafari1<-stack(g0,g1) ## kohtal
        

print(names(rastafari1))

#plot(rastafari1$Elevation)

#out3a<<-downscale_dissever(smallrain0, rastafari1,"lm",1.0)

out3<<-downscaler(smallrain0,g0,0)

plot(out3, col=rev(viridis(100)))

print(minValue(out3)) print(maxValue(out3))

#writeout(out3,outvarfname1,"Rainfall", "mm/yr", "IceAgeRain")

       rainout1<-"./data_result/outrain1.nc"

#writeout(out3,rainout1,"Rainfall", "mm/yr", "IceAgeRain")

# out_text_1="Rainfall" # out_text_2="mm/yr" # out_text_3="IceAgeRain"

writeout(out3,rainout1,out_text_1, out_text_2, out_text_3)

  }


}

get_dordogne_srtm<-function() { ## France/Dorgogne area SRTM netcdf file creation ## "R" script

srtm1 <- getData('SRTM', lon=-5, lat=40) srtm2 <- getData('SRTM', lon=-5, lat=45) srtm3 <- getData('SRTM', lon=-5, lat=50) srtm4 <- getData('SRTM', lon=-5, lat=55)

srtm6 <- getData('SRTM', lon=0, lat=40) srtm7 <- getData('SRTM', lon=0, lat=45) srtm8 <- getData('SRTM', lon=0, lat=50) srtm9 <- getData('SRTM', lon=0, lat=55)

srtm10 <- getData('SRTM', lon=5, lat=40)

srtm11 <- getData('SRTM', lon=5, lat=45) srtm12 <- getData('SRTM', lon=5, lat=50) srtm13 <- getData('SRTM', lon=5, lat=55)

srtm14 <- getData('SRTM', lon=10, lat=40) srtm15 <- getData('SRTM', lon=10, lat=45) srtm16 <- getData('SRTM', lon=10, lat=50) srtm17<- getData('SRTM', lon=10, lat=55)

mosaik1 <- merge( srtm1, srtm2,srtm3, srtm4, srtm6,srtm7,srtm8, srtm9,srtm10, srtm11,srtm12,srtm13, srtm14, srtm15,srtm16,srtm17)

#dordogne ext1 <- extent(-2,4,42 , 48)

kropped1<-crop(mosaik1, ext1)

#plot(kropped1)


crs(kropped1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(kropped1, filename='./predata/dordogne.nc', format="CDF", overwrite=TRUE)

   system("del srtm*.*")

}





    1. main running ...

print("TS downscaler.") print ("Main program running ...")


read_argus()

print("Age") print(fage) print("Numyears") print(numyears) print("Months") print(fmonth)

sealevel_from_age(fage)

if (orography_preprocess==1) { "Orography ..." preprocess_orography() }

if(get_srtm_data==1) { get_dordogne_srtm() }


if(get_gtopo30_data==1) { get_europe_gtopo30() }


if(capture_hadcm3_60ka_data==1) {

if(capture_temperature==1)

{
capture_hadcm3_temperature=1
}

if(capture_rainfall==1)
{
capture_hadcm3_rainfall=1
}

if(capture_hadcm3_temperature==1)

{ print("Processing hadcm3 temperature data to snapshot ...") hadvariaabeli="tas"

	hadfilename<<-generate_hadfilename(hadbasepath, hadyear, hadvariaabeli)

print (hadyear)

load_average_hadcm3_years_months(hadfilename, hadvariaabeli,hadbaseyear, hadyear,hadmonth, hadyears, hadmonths, hadoperaatio,hadcm3_60ka_seafill_method) }

if(capture_hadcm3_rainfall==1)

{

print("Processing hadcm3 rainfall data to snapshot ...") hadvariaabeli="pr"

hadfilename<<-generate_hadfilename(hadbasepath, hadyear, hadvariaabeli)

load_average_hadcm3_years_months(hadfilename, hadvariaabeli,hadbaseyear, hadyear,1, hadyears, 12, 3, hadcm3_60ka_seafill_method)

  }

}

if(capture_trace26k_data==1) { if(capture_temperature==1) { print("Processing input temperature variable to snapshot ...") tracelocation3(predata2, variaabeli, fage, numyears, fmonth); } if(capture_rainfall==1) { print("Processing input rainfall variable to snapshot ...") tracelocation3(predata2, variaabeli, fage, numyears, fmonth); } }


if(capture_elevation==1) { print("Glac elevation ...") load_glac_elev() load_glac_icemask() }

if(capture_elevation==2) { print("Peltier elevation") load_peltier_elev() }


if(make_rain_shadows==1) { if(capture_elevation==2)

  {	

# force method to 0 because of peltier topography downscale_orography(0)

  }
  else
  {	

downscale_orography(method_ds_oro)

  }

## generate rain shadows, assume westerly wind by default print("Generating rain shadows.") generate_rain_shadows()

}


print ("Downscaling ...")

    1. do ts downscaling

if(normal_ds==1) { print("Normal etopo1 area downscaling.") ## default area DS normal_ts_downscale() }


if(normal_ds==3) { print("Rainfall downscaling.")

out_text_1="Rainfall" out_text_2="mm/yr" out_text_3="IceAgeRain"

## default area DS downscale_rainfall() }


if(global_ds==1) { print("World downscaling.") world_ts_downscale() }

if(accurate_ds==1) { print ("Customized dwonscaling.") custom_ts_downscale_1(kustomorofilee1,outvarfname1 ) }

if(plot_result==1) { print("Plotting of draft.")

 plottaus1(outvarfname1,plotfname1 )

}

  1. try(system("python maplot1.py", intern = TRUE, ignore.stderr = TRUE))

print (fage) print("Program run done.")




Extra scripts


Gtopo30

library(raster)

get_gtopo30_data<-function() { # france #ext1 <- extent(-4,8, 39, 51) #dordogne #ext1 <- extent(-2,4,42 , 48)

#europe ext1 <- extent(-15,40,30,70)

outname1<-"./predata/europe30.nc"

r1<-raster("./predata/gt30w020n90.tif") r2<-raster("./predata/gt30e020n90.tif") r4<-raster("./predata/gt30w020n40.tif") r3<-raster("./predata/gt30e020n40.tif")

#plot(r1)

mosaik1 <- merge(r1,r2,r3,r4)

kropped1<-crop(mosaik1, ext1)

#plot(kropped1)

crs(kropped1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" writeRaster(kropped1, filename=outname1, format="CDF", overwrite=TRUE) }

get_gtopo30_data()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current05:10, 9 September 2020Thumbnail for version as of 05:10, 9 September 20201,472 × 976 (972 KB)Merikanto (talk | contribs)Correction of script
12:41, 7 September 2020Thumbnail for version as of 12:41, 7 September 20202,000 × 1,545 (1.58 MB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.