User:Meditate085
Jump to navigation
Jump to search
Introduction
[edit]This page contains accelerating angle curves (AACs) that were excluded from my book but I nevertheless found 'interesting'. Each AAC's symmetry is described using group-theoretic notation (Cn for cyclic group n; Dn for dihedral group n)[1].
Gallery of accelerating angle curves with only rotational symmetry
[edit]-
AAC [9 : 2 1 8 5 3]; C3
-
AAC [108: 0 37 42 63 90]; C9
-
AAC [45: 0 2 9]; C9
-
AAC [576: 0 41 234 360]; C9
-
AAC [360: 0 232 216 288 72]; C9
-
AAC [240: 0 119 84]; C12
-
AAC [240: 0 28 96]; C12
-
AAC [840: 0 839 324]; C12
-
AAC [105: 0 83 15 75 90]; C15
-
AAC [105: 0 8 45]; C15
-
AAC [360: 0 160 297]; C18
-
AAC [360: 0 1 297]; C18
-
AAC [361: 0 258 247 190 209]; C19
-
AAC [361: 0 9 19]; C19
-
AAC [666: 0 118 370]; C37
-
AAC [666: 0 354 444]; C37
-
AAC [360: 0 184 344 40 288 24]; C45
-
AAC [360: 0 175 216]; C72
-
AAC [360: 0 137 225]; C90
Gallery of accelerating angle curves with both rotational and reflectional symmetry (dihedral)
[edit]-
AAC [360: 180 9 9 9]; D1
-
AAC [360: 16 148 264 168]; D2
-
AAC [9 : 2 1 0 5]; D3
-
AAC [21: 6 8 0 3]; D3
-
AAC [360: 24 312 216 72]; D3
-
AAC [12: 0 2 7 7]; D3
-
AAC [36: 10 32 27 8 18]; D3
-
AAC [840: 42 595 690 740]; D3
-
AAC [360: 33 30 324 72]; D3
-
AAC [360: 4 190 57 186]; D4
-
AAC [360: 49 190 57 186]; D4
-
AAC [244: 59 65 184 144 36 192]; D4
-
AAC [5: 0 0 1 1 2 3]; D5
-
AAC [5: 0 4 0 2 4 2]; D5
-
AAC [35: 6 28 15 20]; D5
-
AAC [108: 3 52 66 100]; D6
-
AAC [108: 0 72 18 84]; D6
-
AAC [60: 9 42 2 44]; D6
-
AAC [360: 13 9 90 168 180]; D6
-
AAC [6: 0 2 0 1 3]; D6
-
AAC [12: 1 8 7 5 3 6]; D6
-
AAC [12: 0 8 7 1 0 6]; D6
-
AAC [35: 1 18 7 14]; D7
-
AAC [144 : 0 74 108 36]; D8
-
AAC [360: 0 323 96 264]; D8
-
AAC [120: 0 33 24 24]; D8
-
AAC [36 : 1 22 9 0 18]; D9
-
AAC [360 : 180 130 108 36]; D9
-
AAC [9: 0 3 2 5 6 3]; D9
-
AAC [9: 0 6 2 7 0 6]; D9
-
AAC [10: 0 2 0 0 5]; D10
-
AAC [10: 0 8 4 1 5 4]; D10
-
AAC [96: 3 80 35 34]; D12
-
AAC [840: 24 241 273 558]; D12
-
AAC [96: 7 74 58 52]; D12
-
AAC [240: 6 228 134 172]; D12
-
AAC [378: 0 160 63 42]; D14
-
AAC [60: 2 19 5 40 30]; D15
-
AAC [360: 4 344 216 280 48 264]; D15
-
AAC [360: 0 13 320 55]; D15
-
AAC [108: 5 73 80 1 99 6]; D18
-
AAC [108: 4 79 0 101 3 66]; D18
-
AAC [361: 0 185 0 228]; D19
-
AAC [96: 0 3 4 8]; D24
-
AAC [96: 0 57 48 80]; D24
-
AAC [120: 0 62 25 22 60]; D24
-
AAC [360: 0 293 136 136]; D24
-
AAC [336: 0 279 21 210]; D28
-
AAC [364: 0 47 28 196]; D28
-
AAC [720: 0 258 20 440]; D30
-
AAC [720: 0 714 340 440]; D30
-
AAC [720: 0 39 420 620]; D30
-
AAC [720: 0 82 440 520]; D30
-
AAC [248: 0 2 124]; D31
-
AAC [105: 0 52 0 70 70 7]; D35
-
AAC [360: 0 19 9 18]; D36
-
AAC [360: 0 304 208 224 72 264]; D45
-
AAC [360: 0 264 72 328 312 168]; D45
-
AAC [360: 0 40 112 208 192 96]; D45
-
AAC [360: 0 208 272 16 144 168]; D45
-
AAC [244: 0 162 61 61]; D61
-
AAC [360: 0 63 255 130 180]; D120
References
[edit]- ↑ Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press.